- Воздействие ртути на алюминий
- Ртуть и алюминий
- Оксид алюминия и железная ржавчина
- Ртуть и свежий алюминий
- Как ртуть съедает алюминий
- Механизм реакции
- Химия взаимодействия алюминия и ртути
- Ртуть на алюминии – оружие диверсантов
- Алюминий
- Алюминий и его реакция с водой
- Применение алюминия
- Физические свойства алюминия
- Химические свойства алюминия
- Реакция алюминия с водой
- 2.2.3. Характерные химические свойства алюминия.
- Взаимодействие алюминия с простыми веществами
- с кислородом
- с галогенами
- с серой
- с азотом
- с углеродом
- Взаимодействие алюминия со сложными веществами
- с водой
- с оксидами металлов
- с кислотами-неокислителями
- с кислотами-окислителями
- -концентрированной серной кислотой
- — концентрированной азотной кислотой
- — разбавленной азотной кислотой
- со щелочами
Воздействие ртути на алюминий
Ртуть и алюминий
Существует много причин, по которым не нужно иметь дело с ртутью ни при каких обстоятельствах. Мало того, что она токсична и может привести к эмоциональным и умственным расстройствам человека, так она еще может привести к разрушению алюминиевой конструкции самолета и авиакатастрофе! Как такое может быть?
Оксид алюминия и железная ржавчина
Алюминий в наше время применяют везде: от пивных банок до самолетов. Дело в том, что алюминий является хорошим выбором между другими материалами для многих ситуаций. Он легкий, прочный и имеет покрытие, сравниться с которым по твердости может только алмаз. Железо – точнее сталь – обладает большой прочностью и пока не заменимо, например, в строительстве. Однако, если заставить это железо-сталь летать на морем каждый день, то оно быстро заржавеет. Когда железо ржавеет, это оно соединяется с кислородом. При этом железо превращается в легкие, красные хлопья, которые легко счищаются с поверхности железа. В отличие от железа алюминий при взаимодействии с кислородом образует оксид алюминия – невероятно твердое вещество, которое очень трудно поцарапать.
То резкое различие поведения железа и алюминия при взаимодействии с кислородом только подтверждает эту мысль, что «химия – это колдовство». Оксид алюминия не отслаивается от алюминия, как ржавчина от железа. Наоборот, пленка из оксида алюминия герметизирует оставшийся алюминий и предотвращает дальнейшее его «ржавление». Это – то, что надо для алюминиевой конструкции, которая летает в воздухе и, часто, над морями-океанами.
Ртуть и свежий алюминий
Ртуть разбивает всю это прекрасное совершенство алюминия. Или, по крайней мере, может разбить, если попадет на алюминиевую деталь со свежей царапиной. Если это случается, то ртуть активно соединяется с алюминием, вырывая для этого его из алюминиевой конструкции. Конечно, когда алюминий и ртутная амальгама попадают на воздух, то алюминий тут же соединяется с кислородом с образованием того же сверхпрочного оксида алюминия. Просто это все происходит не в том месте в виде растущих перьев и столбов, которые поднимаются их жидкой ртути.
Этот выход оксида алюминия из первичной царапины дает ртути возможность прорываться сквозь алюминий до тех пор пока вся ртуть не испарится в воздух. Поэтому даже небольшое количество ртути может причинить большие разрушения.
Как ртуть съедает алюминий
Ну, не на самом деле! Что ртуть действительно делает, так это проникает через защитный оксидный слой алюминия, дает возможность алюминию окисляться с очень большой скоростью. Ртуть дает возможность поверхности алюминия быть в постоянном контакте с воздухом и обеспечивает непрерывный процесс образования оксида алюминия. Это выглядит так, как будто, действительно, ртуть ест алюминий.
Конечно, в нормальных условиях этого не случается, так на открытой поверхности алюминия мгновенно образуется пленка оксида алюминия, которая защищает алюминий от дальнейшего окисления. Ртуть ингибирует процесс образования оксидной пленки и дает эту жутковатую картину поедания алюминия ртутью, которая показана здесь.
Механизм реакции
Механизм реакции алюминия с ртутью весьма сложен. Происходит спонтанная реакция между пленкой ртути, алюминием, влагой и кислородом из воздуха (рисунок). В то время как ртуть не растворяется в алюминии, алюминий незначительно растворяется в ртути (0,002 % при комнатной температуре). Когда ртуть смачивает поверхность алюминия, она поддерживает эту поверхность в активированном состоянии, так на ней не может образовываться оксидный слой. Алюминий будет растворяться в ртути и окисляться в контакте с воздухом [2].
В ходе этой реакции не происходит расхода ртути, поэтому один раз начавшись, она, в принципе, никогда не остановится [2].
Рисунок – Воздействие ртути на алюминий [2]
Химия взаимодействия алюминия и ртути
Если на алюминии отсутствует оксидный слой, то ртуть образует с ним амальгаму – сплав алюминия со ртутью. Свежий алюминий с амальгамой на его поверхности бурно реагирует с влагой в воздухе – реагирует очень активно, особенно в дни с высокой влажностью [3]:
В результате этой реакции алюминия с водой образуется гидроксид алюминия, который растет в виде перьев. До тех пор, пока не закончится весь алюминий или вся ртуть в амальгаме не уйдет с продуктами реакции.
Как и большинство спонтанных процессов, образование гидроксида алюминия является экзотермической реакцией и идет с повышением температуры. Температура быстро достигает максимума, а затем реакция может еще продолжаться несколько часов.
Ртуть на алюминии – оружие диверсантов
Говорят, что во Вторую Мировую войну диверсанты пытались повреждать вражеские самолеты, размазывая по ним ртуть. Более достоверными выглядят истории о том, как кто-то разламывал ртутный термометр на чем-то алюминиевом, например, на алюминиевой скамейке в парке. На следующий день, говорят, можно было видеть огромные дыры, которые ртуть проедала в этой скамейке.
Так или иначе, например, на американских авиалиниях запрещено провозить больше одного бытового ртутного градусника, а другие приборы с ртутью перевозятся с большой осторожностью.
Источник
Алюминий
Алюминий является самым распространенным металлом в земной коре. Свойства алюминия позволяют активно применять в составе металлоконструкций: он легкий, мягкий, поддается штамповке, обладает высокой антикоррозийной устойчивостью.
Для алюминия характерна высокая химическая активность, отличается также высокой электро- и теплопроводностью.
Основное и возбужденное состояние
При переходе атома алюминия в возбужденное состояние 2 электрона s-подуровня распариваются, и один электрон переходит на p-подуровень.
Природные соединения
Получение
Алюминий получают путем электролиза расплава Al2O3 в криолите (Na3[AlF6]). Галлий, индий и таллий получают схожим образом — методом электролиза их оксидов и солей.
Химические свойства
При комнатной температуре реагирует с галогенами (кроме фтора) и кислородом, покрываясь при этом оксидной пленкой.
Al + Br2 → AlBr3 (бромид алюминия)
При нагревании алюминий вступает в реакции с фтором, серой, азотом и углеродом.
Al + F2 → (t) AlF3 (фторид алюминия)
Al + S → (t) Al2S3 (сульфид алюминия)
Al + N2 → (t) AlN (нитрид алюминия)
Al + C → (t) Al4C3 (карбид алюминия)
Алюминий проявляет амфотерные свойства (греч. ἀμφότεροι — двойственный), вступает в реакции как с кислотами, так и с основаниями.
Al + NaOH + H2O → Na[Al(OH)4] + H2↑ (тетрагидроксоалюминат натрия; поскольку алюминий дан в чистом виде — выделяется водород)
При прокаливании комплексные соли не образуются, так вода испаряется — вместо них образуются (в рамках ЕГЭ) средние соли — алюминаты (академически — сложные окиселы):
Реакция с водой
При комнатной температуре не идет из-за образования оксидной пленки — Al2O3 — на воздухе. Если разрушить оксидную пленку нагреванием раствора щелочи или амальгамированием (покрытием металла слоем ртути) — реакция идет.
Алюминотермия (лат. Aluminium + греч. therme — тепло) — способ получения металлов и неметаллов, заключающийся в восстановлении их оксидов алюминием. Температуры при этом процессе могут достигать 2400°C.
С помощью алюминотермии получают Fe, Cr, Mn, Ca, Ti, V, W.
Оксид алюминия
Оксид алюминия получают в ходе взаимодействия с кислородом — на воздухе алюминий покрывается оксидной пленкой. При нагревании гидроксид алюминия, как нерастворимое основание, легко разлагается на оксид и воду.
Проявляет амфотерные свойства: реагирует и с кислотами, и с основаниями.
Al2O3 + NaOH + H2O → Na[Al(OH)4] (тетрагидроксоалюминат натрия)
Гидроксид алюминия
Гидроксид алюминия получают в ходе реакций обмена между растворимыми солями алюминия и щелочами. В результате гидролиза солей алюминия часто выпадает белый осадок — гидроксид алюминия.
Проявляет амфотерные свойства. Реагирует и с кислотами, и с основаниями. Вследствие нерастворимости гидроксид алюминия не реагирует с солями.
Al(OH)3 + LiOH → Li[Al(OH)4] (при избытке щелочи будет верным написание — Li3[Al(OH)6] — гексагидроксоалюминат лития)
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
Алюминий и его реакция с водой
Почему алюминий устойчив к коррозии
Впервые алюминий был получен лишь в начале XIX века. Cделал это физик Ганс Эрстед. Свой эксперимент он проводил с амальгамой калия, хлоридом алюминия и ртутью.
Кстати, название этого серебристого материала произошло от латинского слова «квасцы», потому что именно из них добывается этот элемент.
Квасцы – это природные минералы на основе металлов, которые объединяют в своем составе соли серной кислоты.
Раньше алюминий считался драгоценным металлом и стоил на порядок дороже, чем золото. Объяснялось это тем, что металл было довольно сложно отделить от примесей. Так что позволить себе украшения из алюминия могли только богатые и влиятельные люди.
Но в 1886 году Чарльз Холл придумал метод по добыче алюминия в промышленном масштабе, что резко удешевило этот металл и позволило применять его в металлургическом производстве. Промышленный метод заключался в электролизе расплава криолита, в котором растворен оксид алюминия.
Алюминий — очень востребованный металл, ведь именно из него изготавливаются многие вещи, которыми человек пользуется в быту.
Применение алюминия
Благодаря ковкости и легкости, а также защищенности от коррозии, алюминий является ценным металлом в современной промышленности. Из алюминия изготавливают не только кухонную посуду — он широко используется в авто- и авиастроительстве.
Также алюминий является одним из самых недорогих и экономичных материалов, так как его можно использовать бесконечно, переплавляя ненужные алюминиевые предметы, например, банки.
Металлический алюминий безопасен, но его соединения могут оказывать токсическое действие на человека и животных (особенно хлорид, ацетат и сульфат алюминия).
Физические свойства алюминия
Алюминий — достаточно легкий металл серебристого цвета, который может образовывать сплавы с большинством металлов, особенно с медью, магнием и кремнием. Также он весьма пластичен, его без труда можно превратить в тонкую пластинку или же фольгу. Температура плавления алюминия = 660 °C, а температура кипения — 2470 °C.
Химические свойства алюминия
При комнатной температуре металл покрывается прочной пленкой оксида алюминия Al₂O₃, которая защищает его от коррозии.
С окислителями алюминий практически не реагирует из-за защищающей его оксидной пленки. Однако ее можно легко разрушить, чтобы металл проявил активные восстановительные свойства. Разрушить оксидную пленку алюминия можно раствором или расплавом щелочей, кислотами или же с помощью хлорида ртути.
Благодаря восстановительным свойствам алюминий нашел применение в промышленности — для получения других металлов. Этот процесс называется алюмотермией. Такая особенность алюминия заключается во взаимодействии с оксидами других металлов.
Например, рассмотрим реакцию с оксидом хрома:
Cr₂O₃ + Al = Al₂O₃ + Cr.
Алюминий хорошо вступает в реакцию с простыми веществами. Например, с галогенами (за исключением фтора) алюминий может образовать иодид, хлорид, или бромид алюминия:
2Al + 3Cl₂ → 2AlCl₃
С другими неметаллами, такими как фтор, сера, азот, углерод и т.д. алюминий может реагировать только при нагревании.
Также серебристый металл вступает в реакцию и со сложными химическими веществами. Например, с щелочами он образует алюминаты, то есть комплексные соединения, которые активно используются в бумажной и текстильной промышленности. Причем в реакцию вступает как гидроксид алюминия
Al(ОН)₃ + NaOH = Na[Al(OH)₄]),
так и металлический алюминий или же оксид алюминия:
2Al + 2NaOH + 6Н₂О = 2Na[Al(OH)₄] + ЗН₂.
Al₂O₃ + 2NaOH + 3H₂O = 2Na[Al(OH)₄]
С агрессивными кислотами (например, с серной и соляной) алюминий реагирует довольно спокойно, без воспламенения.
Если опустить кусочек металла в соляную кислоту, то пойдет медленная реакция — сначала будет растворяться оксидная пленка — но затем она ускорится. Алюминий растворяется в соляной кислоте с выделением водорода. В результате реакции получается хлорид алюминия:
Al₂O₃ + 6HCl = 2AlCl₃ + 3H₂O
2Al + 6HCl → 2AlCl₃ + 3H₂.
Здесь вы найдете интересные опыты на изучение химических свойств металлов.
Реакция алюминия с водой
Если опустить алюминиевую стружку в обычную воду, ничего не произойдет, потому что алюминий защищен оксидной пленкой, которая не дает этому металлу вступить в реакцию.
Только сняв защитную пленку хлоридом ртути, можно получить результат. Для этого металл нужно вымачивать в растворе хлорида ртути на протяжении двух минут, а затем хорошо его промыть. В результате получится амальгама, сплав ртути и алюминия:
3HgCI₂ + 2Al = 2AlCI₃ + 3Hg
Причем она не удерживается на поверхности металла. Теперь, опустив очищенный металл в воду, можно наблюдать медленную реакцию, которая сопровождается выделением водорода и образованием гидроксида алюминия:
Источник
2.2.3. Характерные химические свойства алюминия.
Алюминий — амфотерный металл. Электронная конфигурация атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 . Таким образом, на внешнем электронном слое у него находятся три валентных электрона: 2 — на 3s- и 1 — на 3p-подуровне. В связи с таким строением для него характерны реакции, в результате которых атом алюминия теряет три электрона с внешнего уровня и приобретает степень окисления +3. Алюминий является высокоактивным металлом и проявляет очень сильные восстановительные свойства.
Взаимодействие алюминия с простыми веществами
с кислородом
При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:
с галогенами
Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:
С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:
Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:
с серой
При нагревании до 150-200 о С или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:
— сульфид алюминия
с азотом
При взаимодействии алюминия с азотом при температуре около 800 o C образуется нитрид алюминия:
с углеродом
При температуре около 2000 o C алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.
Взаимодействие алюминия со сложными веществами
с водой
Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:
с оксидами металлов
После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000 о С. В результате этой реакции образуется высокочистое расплавленное железо:
Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.
с кислотами-неокислителями
Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:
2Аl 0 + 6Н + = 2Аl 3+ + 3H2 0 ;
с кислотами-окислителями
-концентрированной серной кислотой
Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:
Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.
— концентрированной азотной кислотой
Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно параллельно протекают реакции:
— разбавленной азотной кислотой
Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:
со щелочами
Алюминий реагирует как с водными растворами щелочей:
так и с чистыми щелочами при сплавлении:
В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:
В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:
Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:
Источник