Автомобили могут ездить водой

Может ли автомобиль ездить на воде

Житель станицы Каневской утверждает, что использование воды в качестве добавки к бензину сокращает расход последнего на 30-40%.

Вспоминается наша первая встреча с Александром Францевым. У одного из станичных магазинов я обратил внимание на внушительных размеров табличку в салоне «Жигулей»: «Авто на воде – это не шутка». Рядом с автомашиной стоял улыбчивый мужчина, хозяин «десятки».

– Ну, и как реагируют жители, особенно водители, на ваш афоризм? – спросил я автовладельца.

– Да почти никак! Несколько месяцев езжу на бензине с водой, но никто по-настоящему не проявил интереса. Вы – первый.

– Простой журналистский интерес, – ответил я.

– И на том спасибо. Народ у нас, увы, нелюбознательный. Очень жаль. А в Европе уже ездят не только на газе, но и на водороде. Точнее, на воде. Кстати, топливо у них на заправках трех видов: бензин, газ и водород. Слежу по интернету и нашел, что многие из ближнего и дальнего зарубежья тоже переходят на воду. Вот совсем недавно видел ролик одного водителя такси, он уже пару лет использует новый вид топлива. Рекомендую посмотреть, если у вас есть машина.

Тот монолог Александра Евгеньевича сохранился в моем диктофоне. Привожу в сокращении несколько фрагментов.

Читайте также:  Водопроводная вода это проводник

«Сперва я коротко скажу, как все началось. Но не у меня, а в мире. В 1841 году в Англии был выдан патент на двигатель, работающий на смеси воды и кислорода. Если кратко, то называлось это ДВС.

В 1852 году в Мюнхене был построен двигатель внутреннего сгорания. В СССР в предвоенные годы ученые начали испытывать ДВС, работающие на водороде и с его добавлением в топливо. У нас в стране на водородную энергетику обратили внимание в начале 70-х годов. Тогда топливный кризис заставил многие автомобильные компании по-новому взглянуть на альтернативные виды топлива. Тогда-то и был первый всплеск интереса к водороду, запасы которого на земле огромны, ведь его можно получать из воды.

Однако вскоре кризис прошел, и нефтепроводы заработали на полную мощность, а водородные исследования были приостановлены. Но прошло более 30 лет, и эти исследования вновь стали актуальны, особенно учитывая современные экологические настроения. Действительно, сжигая водород, получаем воду…

А у меня все началось с просмотра занимательной статьи в интернете о водородном двигателе. Вот и решил заняться этим делом. Да и с экологией заодно будет чище. Ведь у водорода нет выхлопа, вернее, есть вода. А еще я заметил, что при ремонте двигателя сталкиваешься с такой проблемой как расточка блока цилиндров. После пробега 50 тысяч километров образуется эллипс. Причину этого явления я узнал позже, когда поставил электролизер на свою тестированную машину ВАЗ-2110.

Все очень просто, бензин не весь сгорает без водорода, и более 40 процентов вылетает в трубу. Что же представляет собой мой электролизер? Это банка с герметичной крышкой и штуцер для выхода водорода. Установил я четыре электрода из нержавейки и подключил выпрямитель. Подал напряжение 12 вольт, 5 ампер и опустил свободный край шланга в емкость с водой. А из нее водород стал выходить в виде пузырьков. Поставил эту установку на автомобиль, подключил к аккумуляторной батарее и установил шланг туда, где выходит водород, на воздушный фильтр. Запустил двигатель. Он запустился легко. Я сразу заметил, как он быстро развивает обороты. В общем, я своим дополнением доволен.

– Александр Евгеньевич, а как отнеслись окружающие к вашей новинке?

– Первую хорошую оценку дала жена: «Машина легче едет. Быстрей бежит. Как будто летит», – сказала она. У меня три сына, и каждый одобрил затею отца. Особенно порадовался Олег. Он – водитель. Ему я рассказал о первых лабораторных опытах, которые я проводил, прежде чем сесть за руль машины, которая стала «питаться» бензином и водой.

Сначала я внимательно следил за бульбометром. Так я называю пол-литровую банку с водой. Воду меняю один раз в месяц.

– А теперь назовите, пожалуйста, аргументы в пользу нового топлива.

– Была у меня поездка в Невинномысск. Туда от Каневской 600 километров. Обычно на дорогу уходило 70 литров. Когда поехал на новом топливе, то расход бензина составил 40 литров. Кстати, все мои расходы сократились примерно на 35 процентов. Как-то ездил на рыбалку в Бриньковскую, экономия составила уже 40 процентов.

– Александр Евгеньевич, какова все-таки реакция друзей, знакомых?

– Многие одобряют, но переходить на воду побаиваются. Некоторые называют меня чудаком, о моей установке говорят резко: «Фигня!», а спецы, пошастав по интернету, соглашаются, что за новым видом топлива – будущее».

…Прошло пять лет. Теперь мы встретились с умельцем в его дворе.

– У вас новая машина? – спросил я Францева.

– Новая. Но по возрасту старая, – уточнил Александр Евгеньевич и добавил, – кстати, пятая по счету. Этому «Форду» 20 лет. До этого у меня были «Жигули» восьмой модели, «Мазда», «Лада», «десятка». Получается, что, приобретая старые автомобили, я перевожу их на бензин с водой, и у них появляется второе дыхание. Сын купил «десятку», у которой был двигатель с сильным перегревом – машина «ела» много масла. Пришлось мне вмешаться. После того как «десятка» стала ездить на новом топливе, все проблемы исчезли. И даже друг сына предложил свою «Тойоту» за обновленные «Жигули». Обмен состоялся, и оба водителя им довольны.

– За пять лет к вам кто-нибудь обращался с просьбой помочь в установке так называемого бульбометра?

– Если честно, то всего у четырех земляков-водителей появился интерес. Вопросы касались в первую очередь экономии топлива и затрат на компоненты бульбометра. А они невелики – от 300 до 500 рублей. Некоторые интересовались, сколько будет стоить моя работа. Я всем называл символическую цифру, подчеркивая, что главное для меня – появление последователей. Кстати, установка бульбометра под силу любому автоэлектрику. Мне был приятен разговор с внуком одного ветерана – тракториста, который трудился до войны на тракторе. Так вот, молодой человек рассказал, что дедушкин трактор работал не только на керосине – механизатор параллельно использовал и воду, добавляя ее в форсунку трактора… Я видел по телевизору документальный фильм «Водородный лейтенант». В нем есть рассказ о легендарных машинах-«полуторках». Их водители тоже применяли водородные или, проще говоря, водные компоненты, поскольку в середине войны было трудно с горючим.

Чего же я добиваюсь, пропагандируя езду на бензине и воде? У меня всего две задачи: убедить коллег-водителей в том, что от такого топлива воздух будет чище, а машины не реже будут выходить из строя. Кстати, доказано не только на моем опыте, что машине, работающей на бензиново-водяной смеси, меньше требуется масла. И оно почти не расходуется, как у тех автомобилей, что работают на бензине или даже газе. Ну, и третья задача – экономия топлива и, соответственно, денег владельцев машин. Сейчас каждая моя поездка из Каневской в Краснодар и обратно экономнее, чем лет семь назад, на 30–40 процентов.

От энтузиаста и умельца Францева я узнал, что в «Одноклассниках» он организовал группу «Это вы можете…», собрав свыше пяти тысяч единомышленников. В интернете Александр Евгеньевич постоянно отслеживает новости по любимой теме.

– Особенно популярна сегодня езда на бензине и воде в Болгарии, Германии, Польше, Украине. Есть немало последователей и в США. А я все же надеюсь, что здравый смысл и настоящая борьба за экологию заставят в нашей стране заинтересованные службы повернуться лицом к новому виду топлива.

Источник

Как работает водородный двигатель и какие у него перспективы

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Источник

Оцените статью