- Бериллий: способы получения и химические свойства
- Способ получения
- Качественная реакция
- Химические свойства
- №4 Бериллий
- История открытия:
- Нахождение в природе, получение:
- Физические свойства:
- Химические свойства:
- Важнейшие соединения:
- Применение:
- Глоссарий. Химия
- История
- Происхождение названия
- Нахождение в природе
- Физические свойства
- Химические свойства
Бериллий: способы получения и химические свойства
Бериллий Be — это cветло-серый, легкий, хрупкий металл. На воздухе покрывается оксидной пленкой. Восстановитель.
Относительная молекулярная масса Mr = 9,012; относительная плотность для твердого и жидкого состояния d = 1,85; tпл = 1287º C; tкип = 2507º C.
Способ получения
1. В результате электролиза расплава хлорида бериллия образуются бериллий и хлор :
2. Расплав фторида бериллия подвергают электролизу , в результате чего на выходе образуется бериллий и фтор:
3. Оксид бериллия легко восстанавливается магнием при 700 — 800º С, образуя бериллий и оксид магния:
BeO + Mg = MgO + Be
4. Фторид бериллия также легко восстанавливается магнием при 700 — 750º С с образованием бериллия и фторида магния:
BeF2 + Mg = Be + MgF2
Качественная реакция
Качественная реакция на бериллий — окрашивание пламени горелки в коричнево — красный цвет.
Химические свойства
1. Бериллий — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :
1.1. Бериллий взаимодействует с азотом при 700 — 900º С образуя нитрид бериллия:
1.2. Бериллий сгорает в кислороде (воздухе) при 900º С с образованием оксида бериллия:
2Be + O2 = 2BeO
1.3. Бериллий активно реагирует при комнатной температуре с фтором (комнатная температура) , хлором (250º С), бромом (480º С) и йодом (480º С) . При этом образуются фторид бериллия, хлорид бериллия, бромид бериллия, йодид бериллия :
Be + Br2 = BeBr2
1.4. С серой бериллий реагирует при температуре 1150º C с образованием сульфида бериллия:
Be + S = BeS
1.5. С углеродом бериллий реагирует при 1700 — 1900º С и вакууме, образуя карбид бериллия:
2Be + C = Be2C
2. Бериллий активно взаимодействует со сложными веществами:
2.1. Бериллий при кипении реагирует с водой . Взаимодействие бериллия с водой приводит к образованию гидроксида бериллия и газа водорода:
2.2. Бериллий взаимодействует с кислотами:
2.2.1. Бериллий реагирует с разбавленной соляной кислотой, при этом образуются хлорид бериллия и водород :
Be + 2HCl = BeCl2 + H2 ↑
2.2.2. Реагируя с разбавленной и горячей азотной кислотой бериллий образует нитрат бериллия, газ оксид азота (II) и воду:
2.2.3. В результате реакции концентрированной фтороводородной кислоты и бериллия образуется осадок тетрафторобериллат водорода и газ водород:
2.3. Бериллий может взаимодействовать с основаниями:
2.3.1. Бериллий взаимодействует с гидроксидом натрия в расплаве при температуре 400 — 500º С, при этом образуется бериллат натрия и водород:
Бериллий взаимодействует с гидроксидом натрия в растворе , при этом образуется тетрагидроксобериллат натрия и водород:
2.4. Бериллий вступает в реакцию с газом аммиаком при 500 — 700º С. В результате данной реакции образуется нитрид бериллия и водород:
2.5. Бериллий может вступать в реакцию с оксидами :
В результате взаимодействия бериллия и оксида магния при температуре 1075º С образуется оксид бериллия и магний:
Be + MgO = BeO + Mg
3. Бериллий взаимодействует с органическими веществами :
Бериллий может вступать в реакцию с ацетиленом при 400 — 450º С, образуя карбид бериллия и водород:
Источник
№4 Бериллий
История открытия:
Бериллий был открыт в 1798 году Л. Вокленом в виде берилловой земли (оксида ВеО), когда этот французский химик выяснял общие особенности химического состава драгоценных камней берилла и изумруда. Металлический бериллий был получен в 1828 г. Ф. Велером в Германии и независимо от него А. Бюсси во Франции. Однако из-за примесей его не удавалось сплавить. Лишь в 1898 г. французский химик П. Лебо, подвергнув электролизу двойной фторид калия и бериллия, получил достаточно чистые металлические кристаллы бериллия. Интересно, что из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глюциний» (от греческого glykys — сладкий). Из-за сходства свойств бериллия и алюминия считалось, что это трехвалентный металл с атомной массой 13,5. Эту ошибку исправил Д.И. Менделеев, который, исходя из закономерности изменения свойств элементов в периоде, определил бериллию место во второй группе.
Нахождение в природе, получение:
Бериллий относится к редким элементам, его содержание в земной коре 2,6·10 -4 % по массе. В морской воде содержится до 6·10 -7 мг/л бериллия. Основные природные минералы, содержащие бериллий: берилл Be3Al2(SiO3)6, фенакит Be2SiO4, бертрандит Be4Si2O8·H2O и гельвин (Mn,Fe,Zn)4[BeSiO4]3S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла — драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит и другие. В настоящее время их научились синтезировать искусственно.
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:
BeCl2+2K=Be+2KCl.
В настоящее время бериллий получают,восстанавливая его фторид магнием:
BeF2+Mg=Be+MgF2
либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.
Физические свойства:
Металлический бериллий — твердый, хрупкий металл серого цвета. На воздухе бериллий, как и алюминий, покрыт оксидной пленкой, придающей ему матовый цвет. Температура плавления 1278°C, температура кипения около 2470°C, плотность 1,816 кг/м 3 . До температуры 1277°C устойчив a-Ве (гексагональная решетка типа магния (Mg), параметры а = 0,22855 нм, с = 0,35833 нм), при температурах, предшествующих плавлению металла (1277-1288°C) — b-Ве с кубической решеткой.
Химические свойства:
Наличие оксидной пленки предохраняет металл от дальнейшего разрушения и обусловливает его невысокую химическую активность при комнатной температуре. При нагревании бериллий сгорает на воздухе с образованием оксида BeO, реагирует с серой и азотом. С галогенами бериллий реагирует при обычной температуре или при слабом нагревании. Все эти реакции сопровождаются выделением большого количества теплоты, так как прочность кристаллических решеток возникающих соединений (BeO, BeS, Be3N2, ВеCl2 и др.) довольно велика.
Благодаря образованию на поверхности прочной пленки бериллий не реагирует с водой, хотя находится в ряду стандартных потенциалов значительно левее водорода. Как и алюминий, бериллий реагирует с кислотами и растворами щелочей:
Be + 2HCl = BeCl2 + H2,
Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2.
Интересно, что бериллий хорошо растворяется в концентрированных растворах фторидов:
Be + 4NH4F + 2H2O = (NH4)2[BeF4] + 2NH3*H2O + H2↑
Причина — образование прочных фторидных комплексов.
Важнейшие соединения:
Оксид бериллия , BeO встречается в природе в виде редкого минерала бромеллита. Получают термическим разложением сульфата или гидроксида бериллия выше 800° С. Продукт высокой чистоты образуется при разложении основного ацетата [Be4O(OOCH3)6] выше 600°С.
Непрокаленный оксид бериллия гигроскопичен, адсорбирует до 34% воды, а прокаленный при 1500° С — лишь 0,18%. Оксид бериллия, прокаленный не выше 500°С, легко взаимодействует с кислотами, труднее — с растворами щелочей, а прокаленный выше 727° С — лишь со фтороводородной кислотой, горячей концентрированной серной кислотой и расплавами щелочей. Устойчив к воздействию расплавленных лития, натрия, калия, никеля и железа.
Оксид бериллия обладает очень высокой теплопроводностью. Считается одним из лучших огнеупорных материалов, используется для изготовления тиглей и других изделий
Гидроксид бериллия , Be(OH)2 — полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные свойства: Be(OH)2 + 2КOH = К2[Be(OH)4], Be(OH)2 + 2HCl = BeCl2 + 2H2O.
Действием на гидроксид бериллия Be(OH)2 растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be4O(CH3COO)6.
Галогениды бериллия , бесцв. крист. вещества, расплываются на воздухе, поглощая влагу. Для получения безводного хлорида используется реакция 2BeO + CCl4 = 2BeCl2 + CO2
Подобно хлориду алюминия BeCl2 является катализатором в реакции Фриделя – Крафтса. В растворах подвергается гидролизу
.
Бериллаты , в концентрированных растворах и расплавах щелочей присутствуют бериллаты состава M2BeO2, M3BeO4, в разбавленных растворах гидроксобериллаты M2[Be(OH)4]. Легко гидролизуются до гидроксида бериллия.
.
Гидрид бериллия , BeH2 — полимерное вещество, его получают реакцией: BeCl2 + 2LiH = BeH2 + 2LiCl
Карбид бериллия , Be2С — образуется при взаимодействии бериллия с углеродом. Подобно карбиду алюминия гидролизуется водой с образованием метана.
Применение:
Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллиевые бронзы (Cu и 3-6% Be) – материал для пружин c большой устойчивостью к механической усталости и совершенно не дающих искр при механических ударах.
Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу).
В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов.
В смесях с некоторыми a-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и a-частиц возникают нейтроны: 9 Ве( a,n) 12 C.
Физиологическое действие: в живых организмах бериллий, по-видимому, не несет никакой биологической функции, однако бериллий может замещать магний в некоторых ферментах, что приводит к нарушению их работы. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны, канцерогенны (ПДК 0,001 мг/м 3 ).
Рудакова Анна Валерьевна
ХФ ТюмГУ, 561 группа.
Источник
Глоссарий. Химия
Бери́ллий — элемент главной подгруппы второй группы, второго периода периодической системы химических элементов, с атомным номером 4. Обозначается символом Be (лат. Beryllium). Высокотоксичный элемент. Простое вещество бериллий (CAS-номер: 7440-41-7) — относительно твёрдый металл светло-серого цвета, имеет весьма высокую стоимость.
История
Открыт в 1798 г. французским химиком Луи Никола Вокленом. Большую работу по установлению состава соединений бериллия и его минералов провёл русский химик И. В. Авдеев (1818—1865). Именно он доказал, что оксид бериллия имеет состав BeO, а не Be2O3, как считалось ранее.
Происхождение названия
Название бериллия произошло от названия минерала берилла (др.-греч. βήρυλλος beryllos) (силикат бериллия и алюминия, Be3Al2Si6O18), которое восходит к названию города Белур (Веллуру) в Южной Индии, недалеко от Мадраса; с древних времён в Индии были известны месторождения изумрудов — разновидности берилла. Из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глюциний» (др.-греч. γλυκύς glykys — сладкий).
Нахождение в природе
Изотоп 8 Be отсутствует в природе, поскольку является крайне нестабильным и имеет период полураспада 10 -18 с. Стабильным является 9 Be. Кроме 9 Be в природе встречаются радиоактивные изотопы 7 Be и 10 Be. Среднее содержание бериллия в земной коре 3,8 г/т и увеличивается от ультраосновных (0,2 г/т) к кислым (5 г/т) и щелочным (70 г/т) породам. Основная масса бериллия в магматических породах связана с плагиоклазами, где бериллий замещает кремний. Однако наибольшие его концентрации характерны для некоторых тёмноцветных минералов и мусковита (десятки, реже сотни г/т). Если в щелочных породах бериллий почти полностью рассеивается, то при формировании кислых горных пород он может накапливаться в постмагматических продуктах — пегматитах и пневматолито-гидротермальных телах. В кислых пегматитах образование значительных скоплений бериллия связано с процессами альбитизации и мусковитизации. В пегматитах бериллий образует собственные минералы, но часть его (ок. 10 %) находится в изоморфной форме в породообразующих и второстепенных минералах (микроклине, альбите, кварце, слюдах, и др.). В щелочных пегматитах бериллий устанавливается в небольших количествах в составе редких минералов: эвдидимита, чкаловита, анальцима и лейкофана, где он входит в анионную группу. Постмагматические растворы выносят бериллий из магмы в виде фторсодержащих эманаций и комплексных соединений в ассоциации с вольфрамом, оловом, молибденом и литием . Содержание бериллия в морской воде чрезвычайно низкое — 6×10 -7 мг/л. Известно более 30 собственно бериллиевых минералов, но только 6 из них считаются более-менее распространёнными: берилл, хризоберилл, бертрандит, фенакит, гельвин, даналит. Промышленное значение имеет в основном берилл, в России (Республика Бурятия) разрабатывается фенакит-бертрандитовое Ермаковское месторождение. Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зеленый; изумруд — густо-зеленый, ярко-зеленый; гелиодор — желтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов. Месторождения минералов бериллия присутствуют на территории Бразилии, Аргентины, Африки, Индии, в России — Бурятии, Сибири и др.
Физические свойства
Бериллий — относительно твердый, но хрупкий металл серебристо-белого цвета. Имеет высокий модуль упругости — 300 ГПа (у сталей — 200—210 ГПа). На воздухе активно покрывается стойкой оксидной плёнкой BeO.
Химические свойства
Металлический бериллий относительно мало реакционноспособен при комнатной температуре. В компактном виде он не реагирует с водой и водяным паром даже при температуре красного каления и не окисляется воздухом до 600 °C. Порошок бериллия при поджигании горит ярким пламенем, при этом образуются оксид и нитрид. Галогены реагируют с бериллием при температуре выше 600 °C, а халькогены требуют еще более высокой температуры. Аммиак взаимодействует с бериллием при температуре выше 1200 °C с образованием нитрида Be3N2, а углерод дает карбид Ве2С при 1700 °C. С водородом бериллий непосредственно не реагирует. Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивирует металл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов: Be + 2NaOH(р) + 2H2O = Na2[Be(OH)4] + H2 При проведении реакции с расплавом щелочи при 400—500 °C образуются диоксобериллаты: Be + 2NaOH(ж) = Na2BeO2 + H2
Источник