Биогенные элементы вода соли

Биогенные элементы сточных вод

Биогенными элементами (биогенами) традиционно считаются элементы, входящие, в значительных количествах, в состав живых организмов. Круг элементов, относимых к биогенным, достаточно широк. Это — азот, фосфор, сера, железо, кальций, магний, калий и др.

Вопросы контроля качества воды и экологической оценки водоемов внесли в понятие биогенных элементов более широкий смысл: к ним относят соединения (точнее, компоненты воды), которые, во-первых, являются продуктами жизнедеятельности различных организмов, и, во-вторых, являются «строительным материалом» для живых организмов. В первую очередь к ним относятся соединения азота (нитраты, нитриты, органические и неорганические аммонийные соединения), а также фосфора (ортофосфаты, полифосфаты, органические эфиры фосфорной кислоты и др.). Соединения серы интересуют в этой связи, в меньшей степени, так как сульфаты мы рассматривали в аспекте компонента минерального состава воды, а сульфиды и гидросульфиты, если присутствуют в природных водах, то в очень малых концентрациях, и могут быть обнаружены по запаху.

Нитраты являются солями азотной кислоты и обычно присутствуют в воде. Нитрат-анион содержит атом азота в максимальной степени окисления «+5». Нитратобразующие (нитратфиксирующие) бактерии превращают нитриты (соли азотистой кислоты) в нитраты (соли азотной кислоты) в аэробных условиях. Под влиянием солнечного излучения атмосферный азот (N2) превращается также преимущественно в нитраты посредством образования оксидов азота. Многие минеральные удобрения содержат нитраты, которые при избыточном или нерациональном внесении в почву приводят к загрязнению водоемов. Источниками загрязнения нитратами являются также поверхностные стоки с пастбищ, скотных дворов, молочных ферм и т.п.

Повышенное содержание нитратов в воде может служить индикатором загрязнения водоема в результате распространения фекальных либо химических загрязнений (сельскохозяйственных, промышленных). Богатые нитратными водами сточные канавы ухудшают качество воды в водоеме, стимулируя массовое развитие водной растительности (в первую очередь — сине-зеленых водорослей) и ускоряя эвтрофикацию водоемов. Концентрация нитрат иона в питьевой воде не должна превышать 45 мг/л. Нитритами называются соли азотистой кислоты. Нитрит-анионы являются промежуточными продуктами биологического разложения азотсодержащих, органических соединений и содержат атомы азота в промежуточной степени окисления «+3». Нитрифицирующие бактерии превращают аммонийные соединения в нитриты в аэробных условиях. Некоторые виды бактерий в процессе своей жизнедеятельности также могут восстанавливать нитраты до нитритов, однако это происходит уже в анаэробных условиях. Нитриты часто используются в промышленности как ингибиторы коррозии, в пищевой промышленности — как консерванты. Благодаря способности превращаться в нитраты, нитриты, как правило, отсутствуют в поверхностных водах. Поэтому наличие в анализируемой воде повышенного содержания нитритов свидетельствует о загрязнении воды, причем с учетом частично прошедшей трансформацию азотистых соединений из одних форм в другие. Содержание нитрит-иона в питьевой воде не должно превышать 3 мг/л, лимитирующий показатель вредности — санитарно-токсикологический. Нитраты и нитриты в воде могут быть природного и антропогенного происхождения. Соединения природного происхождения не достигают, как правило, опасных для здоровья концентраций. Они являются санитарными показателями, отражающими динамику процессов естественного самоочищения водных объектов от органического природного загрязнения. Основным источником нитратов антропогенного происхождения являются минеральные азотные удобрения на всех этапах их жизненного цикла — от производства до применения. Второй по важности источник — жидкие отходы промышленных животноводческих комплексов. В процессе образования жидких отходов азот находится в составе органических комплексов, но при вынужденном длительном хранении он минерализуется до нитратов, концентрации которых могут быть очень высокими.

Читайте также:  Водонагреватель с верхним подключением как слить воду

Питьевая вода и продукты питания, содержащие повышенное количество нитратов могут вызывать заболевания, и в первую очередь у младенцев (так называемая метгемоглобинемия). Вследствие этого расстройства ухудшается транспортировка кислорода с клетками крови и возникает синдром «голубого младенца» (гипоксия).

В середине текущего столетия в США были описаны два смертельных случая токсического цианоза среди детей раннего возраста в результате использования для разведения молочных смесей колодезной воды, содержащей высокие концентрации нитратов. Причиной смерти было накопление в крови метгемоглобина, неспособного к переносу кислорода из крови в ткани. В дальнейшем это заболевание получило название воднонитратной метгемоглобинемии. Название болезни не совсем точно отражает патогенетический механизм метгемоглобинообразования. Метгемоглобин образуется в результате связывания оксигемоглобина не с нитратами, а с нитритами, образующимися за счет восстановления нитратов в кишечнике человека. Восстановительные процессы в кишечнике наблюдаются у людей, страдающих дисбактериозом, нарушениями ферментной активности кишечника.

Считается, что основным источником поступления нитратов в организм человека являются растительные продукты питания. Однако следует учитывать, что нитраты воды в 1,5 раза токсичнее нитратов, содержащихся в овощах. При повышенном содержании нитратов в воде ее роль в нагрузке организма нитратами является ведущей.

В последние два десятилетия большое внимание привлекает проблема канцерогенной опасности, связанной с присутствием в воде нитратов и нитритов. Сами эти соединения канцерогенным действием, по-видимому, не обладают, но в 1967 г. впервые экспериментально доказана возможность образования канцерогенных N-нитрозосоединений из нитрита натрия и вторичных легконитрозируемых аминов в желудочном соке человека. Многочисленные работы, опубликованные в последующем, не только подтвердили способность нитритов и нитратов участвовать в синтезе N-нитрозаминов, но и выявили их способность снижать резистентность организма к воздействию других бластомогенных и мутагенных агентов.

Читайте также:  Соотношение сахар вода для компота

Канцерогенно-опасный уровень нитратов в воде пока не установлен, но специалисты ВОЗ считают, что признанный в мире норматив содержания нитратов в воде, безопасный в отношении метгемоглобинемии (10 мг/л по азоту или 45 мг/л по NOз-), не опасен и по признаку канцерогенности .

Соединения аммония содержат атом азота в минимальной степени окисления «+3». Катионы аммония являются продуктом микробиологического разложения белков животного и растительного происхождения. Образовавшийся таким образом аммоний вновь вовлекается в процесс синтеза белков, участвуя тем самым в биологическом круговороте веществ (цикле азота). По этой причине аммоний и его соединения в небольших концентрациях обычно присутствуют в природных водах.

Существуют два основных источника загрязнения окружающей среды аммонийными соединениями. Аммонийные соединения в больших количествах входят в состав минеральных и органических удобрений, избыточное и неправильное применение которых приводит к соответствующему загрязнению водоемов. Кроме того, аммонийные соединения в значительных количествах присутствуют в нечистотах (фекалиях). Не утилизированные должным образом нечистоты могут проникать в грунтовые воды или смываться поверхностными стоками в водоемы. Стоки с пастбищ и мест скопления скота, сточные воды от животноводческих комплексов, а также бытовые и хозяйственно-фекальные стоки всегда содержат большие количества аммонийных соединений. Опасное загрязнение грунтовых вод хозяйственно-фекальными и бытовыми сточными водами происходит при разгерметизации системы канализации. По этим причинам повышенное содержание аммонийного азота в поверхностных водах обычно является признаком хозяйственно-фекальных загрязнений.

ПДК аммиака и ионов аммония в воде водоемов хозяйственно-бытового назначения составляет 2,6 мг/л (или 2,0 мг/л по аммонийному азоту). Лимитирующий показатель вредности — общесанитарный

Источник

Лекция 4. Химический состав клеток. Вода, соли

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными. По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы, элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K, Na, Ca, Mg, S, P, Cl, Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.

Неорганические вещества клетки. Вода.

Вода – самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша – более 90%.

Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах. Химические и физические свойства воды необычны. Они объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями.

В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет частичный отрицательный заряд, а два водородных – частично положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды. Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью, благодаря чему в различных участках клетки поддерживается одинаковая температура. Вода практически не сжимается, прозрачна в видимом участке спектра. Наконец, вода – единственное вещество, плотность которого в жидком состоянии больше, чем в твердом.

Рис. . Вода. Значение воды.

Вода – хороший растворитель ионных (полярных) соединений, а также некоторых не ионных, в молекуле которых присутствуют заряженные (полярные) группы. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то молекулы гидратируются и вещество растворяется. По отношению к воде различают гидрофильные вещества – вещества, хорошо растворимые в воде и гидрофобные вещества – вещества, практически нерастворимые в воде. Есть органические молекулы, у которых один участок – гидрофилен, другой – гидрофобен. Такие молекулы называют амфипатическими, к ним относятся, например, фосфолипиды, образующие основу биологических мембран.

Вода является непосредственным участником многих химических реакций (гиролитическое расщепление белков, углеводов, жиров и др.), необходима как метаболит для реакций фотосинтеза.

Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе. Благодаря большой теплоте испарения воды, происходит охлаждение организма.

Максимальная плотность воды при +4°С, при понижении температуры вода поднимается вверх, а так как плотность льда меньше плотности воды, то лед образуется на поверхности, поэтому при замерзании водоемов подо льдом остается жизненное пространство для водных организмов.

Благодаря силам когезии (электростатическому взаимодействию молекул воды, водородным связям) и адгезии (взаимодействию с окружающими ее стенками) вода обладает свойством подниматься по капиллярам – один из факторов, обеспечивающих движение воды в сосудах растений.

Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).

Итак, значение воды для организма заключается в следующем:

  1. Является средой обитания для многих организмов;
  2. Является основой внутренней и внутриклеточной среды;
  3. Обеспечивает транспорт веществ;
  4. Обеспечивает поддержание пространственной структуры растворенных в ней молекул (гидратирует полярные молекулы, окружает неполярные молекулы, способствуя их слипанию);
  5. Служит растворителем и средой для диффузии;
  6. Участвует в реакциях фотосинтеза и гидролиза;
  7. При испарении участвует в терморегуляции организма;
  8. Обеспечивает равномерное распределение тепла в организме;
  9. Максимальная плотность воды при +4°С, поэтому лед образуется на поверхности воды.

Минеральные вещества.

Минеральные вещества клетки в основном представлены солями, которые диссоциируют на анионы и катионы, некоторые используются в неионизированной форме (Fe, Mg, Cu, Co, Ni и др.)

Для процессов жизнедеятельности клетки наиболее важны катионы Na + , Ca 2+ , Mg 2+ , анионы HPO4 2- , Cl — , HCO3 — . Концентрации ионов в клетке и среде ее обитания, как правило, различны. В нервных и мышечных клетках концентрация К + внутри клетки в 30-40 раз больше, чем вне клетки; концентрация Na + вне клетки в 10-12 раз больше, нежели в клетке. Ионов Сl — вне клетки в 30—50 раз больше, чем внутри клетки. Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

Табл. 1. Важнейшие химические элементы

Химический элемент

Вещества, в которых химический элемент содержится

Процессы, в которых химический элемент участвует

Углерод, водород, кислород, азот

Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества

Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами

Обеспечивают функции мембран, в частности, поддерживают электрический потенциал клеточной мембраны, работу Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Фосфат кальция, карбонат кальция

Участвует в процессе свертывания крови, сокращения мышц, входит в состав костной ткани, зубной эмали, раковин моллюсков

Формирование срединной пластинки и клеточной стенки у растений

Формирование пространственной структуры белка за счет образования дисульфидных мостиков

Нуклеиновые кислоты, АТФ

Синтез нуклеиновых кислот, фосфорилирование белков (их активирование)

Поддерживает электрический потенциал клеточной мембраны, работу Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Активизирует пищеварительные ферменты желудочного сока

Перенос электронов при фотосинтезе и дыхании

Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Транспорт кислорода у некоторых беспозвоночных

Входит в состав более 100 ферментов: Алькогольдегидрогеназа, карбоангидраза

Анаэробное дыхание у растений

Транспорт СО2 у позвоночных

Костная ткань, зубная эмаль

Регуляция основного обмена

Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К + , Na + , Ca 2+ обеспечивают раздражимость живых организмов; катионы Mg 2+ , Mn 2+ , Zn 2+ , Ca 2+ и др. необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg 2+ (составная часть хлорофилла).

От концентрации солей внутри клетки зависят ее буферные свойства. Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне (рН около 7,4). Внутри клетки буферность обеспечивается главным образом анионами H2PO4 — и НРО4 2- . Во внеклеточной жидкости и в крови роль буфера играют Н2СО3 и НСО3 — .

Фосфатная буферная система:

Низкий pH Высокий pH

Гидрофосфат – ион Дигидрофосфат – ион

Бикарбонатная буферная система:

Низкий pH Высокий pH

Гидрокарбонат – ион Угольная кислота

Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.

Ключевые термины и понятия

1. Общая биология. 2. Тропизмы, таксисы, рефлексы. 2. Биогенные элементы. 3. Макроэлементы. 4. Элементы 1 и 2 групп. 5. Микро- и ультрамикроэлементы. 6. Гидрофильные и гидрофобные вещества. 7. Амфипатические вещества. 8. Гидролиз. 9. Гидратация. 10. Буферность.

Основные вопросы для повторения

  1. Строение молекулы воды и ее свойства.
  2. Значение воды.
  3. Процентное соотношение органических веществ в клетке.
  4. Важнейшие катионы клетки и их концентрация в нервных и мышечных клетках.
  5. Реакция фосфатной буферной системы при понижении рН.
  6. Реакция карбонатной буферной системы при повышении рН.

Источник

Оцените статью