Чем теплее вода тем испарение

Чем теплее вода тем испарение

§ 35. Влага в атмосфере

• Какими показателями характеризуют влажность воздуха.

• Как образуются туман и облака.

• Что такое водяной пар? Какими свойствами он обладает?

Обратитесь к электронному приложению Что такое влажность воздуха. В атмосфере всегда присутствует водяной пар. Он так же невидим, как и все остальные газы воздуха. Водяной пар появляется в атмосфере в результате испарения воды с поверхности водоёмов и суши. Много воды испаряют растения.

Где больше водяного пара — в воздухе вблизи морей и океанов или вдали от них?

Количество водяного пара в воздухе характеризуется с помощью двух показателей: абсолютной и относительной влажности воздуха.

Абсолютная влажность воздуха — это количество водяного пара в граммах, находящееся в 1 м 3 воздуха.

Абсолютная влажность растёт при увеличении температуры воздуха и запасов влаги на поверхности.

Однако воздух не может поглощать водяной пар бесконечно. Существует предел его насыщения влагой, который зависит от температуры (рис. 113). Степень насыщения воздуха водяным паром характеризует относительная влажность воздуха.

Относительная влажность воздуха — это отношение абсолютной влажности к тому количеству влаги, которое может содержать воздух при определённой температуре.

Рис. 113. Зависимость количества водяного пара в насыщенном воздухе от температуры воздуха

По рисунку определите, сколько водяного пара может содержать 1 м 3 воздуха при температуре –20; 0; +20 °С.

Рис. 114. Волосяной гигрометр

Относительную влажность выражают в процентах. Если при температуре +20 °С 1 м 3 воздуха содержит 8 1 /2 г водяного пара, то это только половина того, что может содержаться в воздухе при данной температуре. Относительная влажность в этом случае составляет 50%.

Относительную влажность измеряют с помощью специальных приборов — гигрометров (рис. 114).

Показатель относительной влажности воздуха имеет большое значение для жизни растений, животных и человека. При маленькой относительной влажности ускоряется испарение с поверхности тел, содержащих воду. Человек чувствует себя хорошо при относительной влажности от 40 до 75%. Отклонение от этих показателей отзывается в организме ощущением сухости или сырости.

Рассчитайте относительную влажность воздуха:

• если абсолютная влажность составляет 6 г в 1 м 3 при температуре +30 °С;

• если абсолютная влажность составляет 2 1 /2 г в 1 м 3 при температуре 0 °С.

Во что превращается водяной пар. Если воздух нагреть, он расширится и будет дополнительно поглощать водяной пар.

При охлаждении воздух, наоборот, сжимается и не может содержать в себе много водяного пара. Излишек влаги при этом выделяется в виде капелек воды, а при температуре ниже 0 °С — в виде кристалликов льда. Это явление называется конденсацией .

Конденсация — это переход воды из газообразного состояния в жидкое.

Рассчитайте, сколько граммов воды выделится из насыщенного воздуха с температурой +20 °С при его охлаждении до 0 °С.

Конденсация водяного пара — очень важный процесс, играющий большую роль в круговороте воды. Конденсация участвует и в процессах обмена теплом между землёй и атмосферой, так как при испарении воды тепло поглощается, а при конденсации водяного пара, наоборот, выделяется.

Рис. 115. Туман

Туманы часто наблюдаются в ясные прохладные ночи или ранним утром над низинами и водоёмами.

Когда конденсация водяного пара происходит в слое воздуха, находящемся около земной поверхности, образуется туман (рис. 115).

Туман — это мельчайшие капельки воды или кристаллики льда, парящие в приземном слое воздуха.

Как образуются облака. Водяной пар не всегда конденсируется близ поверхности. Когда воздух, нагреваясь от земной поверхности, поднимается вверх, вместе с ним поднимается и водяной пар. Поднимаясь, воздух постепенно охлаждается. На определённой высоте он достигает температуры, при которой водяной пар превращается в капельки воды или кристаллики льда. Так образуются облака (рис. 116).

Облака — это видимые скопления капель воды и кристалликов льда, находящиеся на некоторой высоте в тропосфере.

Облака формируются в тропосфере вплоть до её верхней границы. В зависимости от температуры они могут быть полностью водяными, полностью ледяными или смешанными.

По высоте образования и внешнему виду облака объединяют в три основные группы: слоистые , кучевые и перистые .

С помощью рисунка 113 определите, при какой температуре начнут образовываться облака в воздухе с абсолютной влажностью 5 г в 1 м 3 . Рассчитайте высоту, где будет такая температура, если у поверхности она +18 °С.

Облака влияют на освещённость земной поверхности, выпадение осадков, обмен теплом между земной поверхностью и атмосферой.

Степень покрытия неба облаками называют облачностью . Этот показатель выражают в баллах от 1 до 10.

Рис. 116. Основные виды облаков

Источник

Испарение

О чем эта статья:

Испарение: что это за процесс

Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.

Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.

Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.

  • Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
  • Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.

Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.

Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .

Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.

Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:

  • из глубины жидкости к поверхности, а затем в воздух;
  • только из жидкости к поверхности;
  • к поверхности из воды и газовой среды одновременно;
  • к площади поверхности только от воздуха.

Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:

Испарение Кипение
При любой температуре, с поверхности жидкости При определенной температуре, во всем объеме жидкости

Испарение на уровне молекул

Давайте вспомним об особенностях разных агрегатных состояний вещества.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.

В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.

Интенсивность испарения

Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.

Интенсивность испарения зависит от следующих факторов:

  • Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
  • Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
  • Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
  • Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.

Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.

Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.

По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.

Насыщенный пар

Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.

Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.

На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.

Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Испарение в жизни

И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.

Испарение в организме человека и животных

Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.

Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.

Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶

Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.

Испарение у растений

Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.

Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.

Испарение в природе и окружающей среде

Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.

Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.

Испарение в промышленности и быту

С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.

В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.

Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.

Источник

Читайте также:  Что делать когда пролил воду
Оцените статью