Что будет если смешать натрий с водой

Натрий: способы получения и химические свойства

Натрий — это щелочной металл, серебристо-белого цвета. Легкий, очень мягкий, низкая температура плавления.

Относительная молекулярная масса Mr = 22,990; относительная плотность по твердому состоянию d = 0,968; относительная плотность по жидкому состоянию d = 0, 27; tпл = 97,83º C; tкип = 886º C.

Способ получения

1. Натрий получают в промышленности электролизом расплава гидроксида натрия, в результате образуется натрий, кислород и вода:

4NaOH → 4Na + O2↑ + 2H2O

Качественная реакция

Качественная реакция на натрий — окрашивание пламени солями натрия в желтый цвет .

Химические свойства

Натрий — активный металл; на воздухе реагирует с кислородом и покрывается оксидной пленкой. Воспламеняется при умеренном нагревании; окрашивает пламя газовой горелки в темно-красный цвет.

1. Натрий — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :

1.1. Натрий легко реагирует с галогенами с образованием галогенидов:

2Na + I2 = 2NaI

1.2. Натрий реагирует с серой с образованием сульфида натрия:

2Na + S = Na2S

1.3. Натрий активно реагирует с фосфором и водородом . При этом образуются бинарные соединения — фосфид натрия и гидрид натрия:

3Na + P = Na3P

2Na + H2 = 2NaH

1.4. С азотом натрий реагирует при температуре 100º С и электрическом разряде с образованием нитрида:

1.5. Натрий реагирует с углеродом с образованием карбида:

1.6. При взаимодействии с кислородом при температуре 250–400º C натрий образует пероксид натрия:

2. Натрий активно взаимодействует со сложными веществами:

2.1. Натрий реагирует с водой . Взаимодействие натрия с водой приводит к образованию щелочи и водорода:

2Na 0 + 2 H2 O = 2 Na + OH + H2 0

2.2. Натрий взаимодействует с кислотами . При этом образуются соль и водород.

Например , натрий реагирует с разбавленной соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. Натрий может реагировать с аммиаком , при этом образуются амид натрия и водород:

2.4. Н атрий может взаимодействовать с гидроксидами:

Например , натрий взаимодействует с гидроксидом натрия при температуре 600º С:

2Na + 2NaOH = 2Na2O + H2

Источник

Реакция воды и натрия: что там происходит

Группа исследователей во главе с Павлом Юнгвиртом (Pavel Jungwirth) из Чешской академии наук в Праге (Чехия) провели эксперимент для изучения деталей детонации натрия в воде. Ученые засняли реакцию с помощью камер замедленной съемки и обнаружили удивительные подробности. Результаты исследования опубликованы в Nature Chemistry.

В ходе популярного эксперимента, известного еще с XIX века, в обычную воду опускают кусок натрия. Это вызывает мгновенную и бурную реакцию, а иногда, на радость школьников — и взрыв. Все дело в том, что натрий является одним из щелочных металлов. В «чистом виде» при комнатной температуре он представляет собой твердое вещество, которое, однако, можно резать ножом. Всем известна поваренная соль. В этом виде натрий стабилен, и мы не видим подобной реакции, к примеру, подсаливая суп, поскольку в соли натрий присутствует в виде хлорида. Чистые щелочные металлы – совсем другое дело. Когда они соприкасаются с водой, происходит реакция окисления. Электроны покидают металл, выделяется тепло и газ водород, который может воспламениться. Так описывает процесс хрестоматийная теория популярного эксперимента. Однако в ней все еще остаются белые пятна.

Чешские исследователи задались целью выяснить подробности этого процесса. Поначалу они опускали в воду небольшие кусочки натрия. Результаты оказались непредсказуемы: вспышка то происходила, то нет. Причиной нестабильности были незначительные колебания в размере и форме металла. Тогда ученые использовали смесь жидкого натрия и другого щелочного металла, калия. Это позволило исследователям производить капли одинаковой формы и величины.

Съемка со скорость тысяча кадров в секунду показала, что через пять миллисекунд, попав в воду, щелочной металл «съеживается», выпуская десятки и сотни «игл». Ученые предположили, что это происходит в силу того, что электроны из металла мгновенно уходят в воду, и в нем происходит накопление положительного заряда. Взаимное отталкивание положительно заряженных частиц разрывает металл, вызывая появление «игл». В свою очередь это увеличивает площадь металла, контактирующего с водой, вызывая бурную реакцию. Компьютерное моделирование, проведенное после эксперимента, подтвердило этот эффект, хотя и на примере значительно меньшего количества натрия из-за ограниченности вычислительной мощности.

Подробное объяснение природы этой реакции — которым, как ни странно, до сих пор никто не озаботился — может быть применено для предотвращения подобных взрывов на производственных объектах, использующих щелочные металлы, например, в некоторых видах ядерных реакторов, которые охлаждаются жидким металлом. Но это все уже прикладное, как признается руководитель группы исследователей — похоже, им, как и любым мальчишкам, нравится играть со взрывчатыми веществами.

И добавим о российских химических новостях — не так взрывчато, зато куда фундаментальнее — как сообщал недавно наш портал, российским химикам удалось получить титан с особо низкой радиактивностью, что может быть крайне полезным для экспериментов с элементарными частицами.

Источник

Эксперимент «Натрий на воде»

Почему металл не тонет, а бегает по воде?

Можно ли заставить металл бегать по воде? Давайте проверим!

Меры предосторожности

Проводите опыт в защитных перчатках, очках и маске. Соблюдайте технику безопасности при работе с огнем и горючими предметами, а также активными металлами (литий, натрий, калий, рубидий, цезий).

Внимание! Не проводите этот опыт самостоятельно — только в присутствии профессионала!

Реагенты и оборудование:

  • металлический натрий;
  • 1%-й р-р фенолфталеина;
  • 1%-й р-р индигокармина;
  • 1%-й р-р тимолового синего;
  • вода;
  • кристаллизатор (3 шт.).

Пошаговая инструкция

В кристаллизаторы наливаем воду и добавляем растворы индикаторов: в первый кристаллизатор капаем фенолфталеин, во второй — индигокармин, а в третий — тимоловый синий. Добавляем по кусочку металлического натрия. Наблюдаем изменение окраски во всех трех кристаллизаторах.

Пояснение процессов

Натрий — очень активный металл, он способен вытеснять водород из воды. Реакция натрия и воды нередко сопровождается взрывом. Если маленький кусочек натрия бросить в кристаллизатор с водой и кислотно-основным индикатором, натрий будет быстро бегать по поверхности жидкости. При этом он будет плавиться, превращаясь в красивую «бусину», которая может даже загореться!

Почему натрий бегает

При взаимодействии с водой выделяется водород, который подталкивает натрий к «бегству».

Почему натрий плавится и загорается

Реакция натрия с водой сопровождается выделением огромного количества тепла — из-за этого металл плавится. Этой энергии реакции достаточно, чтобы поджечь выделяющейся водород!

Почему изменяется цвет растворов

Фенолфталеин, индигокармин и тимоловый синий являются кислотно-основными индикаторами, то есть веществами, которые изменяют свой цвет в зависимости от водородного показателя среды. При взаимодействии натрия с водой образуется гидроксид натрия, который является очень сильным основанием — так среда становится щелочной. Фенолфталеин меняет цвет от бесцветного к малиновому, индигокармин — от синего к зеленому, а тимоловый синий — от желтого к синему.

Источник

Спросите Итана: каковы квантовые причины реакции натрия с водой?


Если поместить кусочек натрия в воду, можно вызвать бурную, часто взрывную реакцию

Иногда мы узнаём что-то в начале жизни и просто принимаем, как данность, что мир работает именно так. К примеру, если бросить кусочек чистого натрия в воду, можно получить легендарную взрывную реакцию. Как только кусочек намокнет, реакция заставляет его шипеть и разогреваться, он прыгает по поверхности воды и даже выдаёт язычки пламени. Это, конечно, просто химия. Но не происходит ли чего-то ещё на фундаментальном уровне? Именно это и хочет узнать наш читатель Семён Стопкин из России:

Какие силы управляют химическими реакциями, и что происходит на квантовом уровне? В частности, что происходит, когда вода взаимодействует с натрием?

Реакция натрия с водой — это классика, и у неё есть глубокое объяснение. Начнём с изучения прохождения реакции.

Первое, что нужно знать о натрии — на атомном уровне у него всего на один протон и один электрон больше, чем у инертного, или благородного газа, неона. Инертные газы не реагируют ни с чем, и всё из-за того, что все их атомные орбитали полностью заполнены электронами. Эта сверхстабильная конфигурация рушится, когда вы переходите на один элемент далее в периодической таблице Менделеева, и это происходит со всеми элементами, демонстрирующими похожее поведение. Гелий сверхстабилен, а литий чрезвычайно активен химически. Неон стабилен, а натрий активен. Аргон, криптон и ксенон — стабильны, но калий, рубидий и цезий — активны.

Причина заключается в дополнительном электроне.


Таблица Менделеева рассортирована по периодам и группам согласно количеству свободных и занятых валентных электронов — а это первейший фактор в определении химических свойств элемента

Когда мы изучаем атомы, мы привыкаем считать ядро твёрдым, мелким, положительно заряженным центром, а электроны — отрицательно заряженными точками на орбите вокруг него. Но в квантовой физике этим дело не заканчивается. Электроны могут вести себя, как точки, в особенности если выстрелить в них другой высокоэнергетической частицей или фотоном, но если их оставить в покое, они расплываются и ведут себя, как волны. Эти волны способны самонастраиваться определённым образом: сферически (для s-орбиталей, содержащих по 2 электрона), перпендикулярно (для p-орбиталей, содержащих по 6 электронов), и далее, до d-орбиталей (по 10 электронов), f-орбиталей (по 14) и т.д.


Орбитали атомов в состоянии с наименьшей энергией находятся вверху слева, и при продвижении вправо и вниз энергии растут. Эти фундаментальные конфигурации управляют поведением атомов и внутриатомными взаимодействиями.

Заполняются эти оболочки из-за принципа запрета Паули, запрещающего двум одинаковым фермионам (например, электронам) занимать одно и то же квантовое состояние. Если в атоме электронная орбиталь заполнилась, то единственное место, где можно разместить электрон — это следующая, более высокая орбиталь. Атом хлора с удовольствием примет дополнительный электрон, поскольку ему не хватает всего одного для заполнения электронной оболочки. И наоборот, атом натрия с удовольствием отдаст свой последний электрон, поскольку он у него лишний, а все остальные заполнили оболочки. Поэтому натрий хлор так хорошо и получается: натрий отдаёт электрон хлору, и оба атома находятся в энергетически предпочтительной конфигурации.


Элементы первой группы периодической таблицы, особенно литий, натрий, калий, рубидий и т.д. теряют свой первый электрон гораздо легче всех остальных

На самом деле количество энергии, необходимое для того, чтобы атом отдал свой внешний электрон, или энергия ионизации, оказывается особенно низкой у металлов с одним валентным электроном. Из чисел видно, что гораздо легче забрать электрон у лития, натрия, калия, рубидия, цезия и т.п., чем у любого другого элемента


Кадр из анимации, демонстрирующей динамическое взаимодействие молекул воды. Отдельные молекулы H2O имеют V-образную форму и состоят из двух атомов водорода (белые), соединённых с атомом кислорода (красные). Соседние молекулы H2O кратковременно реагируют друг с другом через водородные связи (бело-голубые овалы)

Так что же происходит в присутствии воды? Вы можете представлять себе молекулы воды как крайне стабильные — H2O, два водорода, связанные с одним кислородом. Но молекула воды чрезвычайно полярная — то есть, с одной стороны молекулы H2O (со стороны, противоположной двум водородам) заряд получается отрицательным, а с противоположной — положительным. Этого эффекта достаточно для того, чтобы некоторые молекулы воды — порядка одной на несколько миллионов — распадались на два иона — один протон (H + ) и ион гидроксила (OH — ).


В присутствии большого количества чрезвычайно полярных молекул воды одна из нескольких миллионов молекул распадётся на ионы гидроксила и свободные протоны — этот процесс называется автопротолиз

Последствия этого довольно важны для таких вещей, как кислоты и основания, для процессов растворения солей и активизации химических реакций, и т.п. Но нас интересует, что происходит при добавлении натрия. Натрий — этот нейтральный атом с одним плохо держащимся внешним электроном — попадает в воду. А это не просто нейтральные молекулы H2O, это ионы гидроксила и отдельные протоны. Важны нам прежде всего протоны — они и подводят нас к ключевому вопросу:

Что энергетически предпочтительнее? Иметь нейтральный атом натрия Na вместе с отдельным протоном H+, или ион натрия, потерявший электрон Na + вместе с нейтральным атомом водорода H?

Ответ прост: в любом случае электрон перепрыгнет с атома натрия на первый же встречный отдельный протон, который попадётся ему на пути.


Потеряв электрон, ион натрия с удовольствием растворится в воде, как делает ион хлора, приобретя электрон. Гораздо более выгодно энергетически — в случае натрия — чтобы электрон спарился с ионом водорода

Именно поэтому реакция происходит так быстро и с таким выходом энергии. Но это ещё не всё. У нас получились нейтральные атомы водорода, и, в отличие от натрия, они не выстраиваются в блок отдельных атомов, связанных вместе. Водород — это газ, и он переходит в ещё более энергетически предпочтительное состояние: формирует нейтральную молекулу водорода H2. И в результате образуется много свободной энергии, уходящей в разогрев окружающих молекул, нейтральный водород в виде газа, который выходит из жидкого раствора в атмосферу, содержащую нейтральный кислород O2.


Удалённая камера снимает вблизи главный двигатель Шатла во время тестового прогона в космическом центре имени Джона Стенниса. Водород — предпочтительное топливо для ракет благодаря его низкому молекулярному весу и избытку кислорода в атмосфере, с которым он может реагировать

Если накопить достаточное количество энергии, водород и кислород тоже вступят в реакцию! Это яростное горение выдаёт водяной пар и огромное количество энергии. Поэтому при попадании кусочка натрия (или любого элемента их первой группы периодической таблицы) в воду случается взрывной выход энергии. Всё это происходит из-за переноса электронов, управляемого квантовыми законами Вселенной, и электромагнитных свойств заряженных частиц, составляющих атомы и ионы.


Энергетические уровни и волновые функции электронов, соответствующие различным состояниям атома водорода — хотя почти такие же конфигурации присущи всем атомам. Уровни энергии квантуются кратно постоянной Планка, но даже минимальная энергия, основное состояние, имеет две возможные конфигурации в зависимости от соотношения спинов электрона и протона

Итак, повторим, что происходит, когда кусочек натрия падает в воду:

  • натрий немедля отдаёт внешний электрон в воду,
  • где он поглощается ионом водорода и формирует нейтральный водород,
  • эта реакция высвобождает большое количество энергии, и разогревает окружающие молекулы,
  • нейтральный водород превращается в молекулярный водородный газ и поднимается из жидкости,
  • и, наконец, при достаточном количестве энергии атмосферный кислород вступает с водородным газом в реакцию горения.


Металлический натрий

Всё это можно просто и элегантно объяснить при помощи правил химии, и именно так это часто и делают. Однако правила, управляющие поведением всех химических реакций, происходит из ещё более фундаментальных законов: законов квантовой физики (таких, как принцип запрета Паули, управляющий поведением электронов в атомах) и электромагнетизм (управляющий взаимодействием заряженных частиц). Без этих законов и сил не будет никакой химии! И благодаря им каждый раз, уронив натрий в воду, вы знаете, чего следует ожидать. Если вы ещё не поняли — нужно надевать защиту, не брать натрий руками и отходить подальше, когда начинается реакция!

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

Источник

Читайте также:  Чем утепляют холодную воду
Оцените статью