- Теплопроводность разных материалов
- Масло как теплоноситель в батареях?
- Теплопроводность
- Опыт 1. Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня
- Опыт 2. Исследование теплопроводности жидкостей на примере воды
- Опыт 3. Исследование теплопроводности газов
- Выводы и их обсуждение
- Применение теплопроводности
- Теплопроводность на кухне
- Отопительная система
- Теплопроводность для тепла
- Теплолечение
- Теплопроводность в бане
- Интересные факты о теплопроводности
- Тепло ли колючим зверям в иголках?
- Полипропилен
- Какой материал имеет самую высокую теплопроводность?
- Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?
- «Огнеупорный шарик»
Теплопроводность разных материалов
Теплопроводность — способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м 2 при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия).
Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т.е. снижаются показатели теплоизоляционных свойств материала.
Теплопроводность некоторых материалов, Вт/(м*k)
Хорошие проводники тепла
Серебро | 407 |
Медь | 384 |
Золото | 308 |
Алюминий | 209 |
Латунь | 111 |
Платина | 70 |
Олово | 65 |
Серый чугун | 50 |
Бронза | 47-58 |
Сталь | 47 |
Свинец | 35 |
Плохие проводники тепла
Ртуть | 8,2 |
Котельная накипь | |
Мрамор | 2,8 |
Лёд (0°С) | 2,23 |
Песчаник | |
Фарфор | |
Кварцевое стекло | 1,36 |
Бетон | 0,7-1,2 |
Стекло | |
Кирпич | |
Вода | 0,58 |
Теплоизоляторы
Асбест | 0,4-0,8 |
Поливинилхлорид | |
Кожа | |
Дерево | 0,1-0,2 |
Древесный уголь | 0,1-0,17 |
Пробка | |
Стекловата | |
Шамот | 0,04 |
Пенопласт | 0,04 |
Воздух | 0,034 |
Перо | 0,02 |
Вакуум | 0,00 |
14 авг. 07 21 окт. 21, 10:35
Рейтинг Поделиться ссылкой
Вы можете изменять любую статью на сайте, более того, ваше участие всячески приветствуется! Делитесь своими знания и опытом.
Источник
Масло как теплоноситель в батареях?
масло, применяемое для охлаждения, НЕ ГОРИТ :))) есть понятие «температура вспышки», но она не относится к обычным условиям
применение масла в системах охлаждения останавливает только одно обстоятельство — масло ДОРОГО
для справки — хорошее масло можно ПИТЬ для отсутсвия всякого вреда организму (противно наверное только 🙂 )
мы в гараже для отопления в качестве теплоносителя применяем масло, на всю систему с расширительным баком и т.д. ушло литров 300-350
само это масло мне поджечь не удалось, дерево, политое им горит очень плохо
единственный минус — это загустение, но при прогреве масло снова становится жидким очень быстро
То что не горит, даже трансформаторное масло — это фантастика-))))Горит и потушить его — целая проблема, песком и тем нужно сыпать такой толстый слой, что замучаешься лопатой махать-)))) На всех емкостях с любым маслом стоит значек «горючеопасно», просто для некоторый температура воспламенения не выше чем для бумаги, но, при определенных условиях могут образовываться пары, который не только легко воспламеняються, но еще и взрываються. Но, впрочем, кто с этим не согласен, может заливать масло, трасформаторное достать не сложно.
«Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150 °С для разных марок.» — это из данных производителей масел (бумага, если мне не изменяет памят воспламеняеться при температуре порядка 200 гр. цельсия)
«Температурой вспышки называется температура нагреваемого в тигле масла, при котором его пары образуют с воздухом смесь, воспламеняющуюся при поднесении к ней пламени. Вспышка происходит настолько быстро, что масло не успевает прогреться и загореться. Температура вспышки трансформаторного масла не должна быть ниже 135° С. Если нагреть масло выше температуры вспышки, то наступает такой момент, когда при поднесении пламени к маслу оно загорается. Температура, при которой масло загорается и горит не менее 5 сек., называется температурой воспламенения масла. Температура, при которой происходит возгорание в закрытом тигле, в присутствии воздуха, без поднесения пламени, называется температурой самовоспламенения. Для трансформаторного масла она составляет 350-400 ° С.» — это из справочника.
«Мерами, позволяющими продлить срок эксплуатации масла, являются:
1) защита масла от соприкосновения с наружным воздухом путем установки расширителей с фильтрами, поглощающими кислород и воду, а также вытеснение из масла воздуха;
2) снижение перегрева масла в условиях эксплуатации;
3) регулярные очистки от воды и шлама;
4) применение для снижения кислотности непрерывной фильтрации масла;
5) повышение стабильности масла путем введения антиокислителей.» — это то что нужно обеспечить при эксплуатации.
Однако можно посмотреть на это
«Очень интересен класс фторорганических жидкостей. В зарубежной литературе они называются перфторуглероды. По сути, это эквивалент обычным органическим жидкостям, только вместо атома водорода везде находится атом фтора. Например есть аналоги органическим соединениям, таким как пентан С5H12 — перфторпентан С5F12, гексан С6H14- перфторгексан С6F14, триэтил(пропил,бутил)амин — перфтортриэтил(пропил,бутил)амин и т.п. Существует даже перфтортрансформаторное масло. (В отличие от настоящего трансформаторного масла перфтортрансформаторное масло при нормальных условиях является твердым веществом и используется в качестве морозостойкой смазки). Наличие фтора на месте водорода означает, что вещество полностью окислилось, ведь фтор является самым сильным окислителем, более сильным, чем кислород. Поэтому фторуглеродные жидкости инертны по отношению к любым воздействиям, в.т.ч. стабильны под действием электрического поля и температуры. Поскольку они ни с чем не взаимодействуют, они не растворяют масла, резину, воду и т.п. Высокие характеристики фторуглеродных жидкостей важны для применений. Замена атома H на атом F приводит к новым свойствам и новым возможностям:
— негорючесть;
— высокая термическая и химическая стабильность;
— инертность по отношению к металлам, твердым диэлектрикам и резинам;
— нетоксичность, отсутствие цвета и запаха;
— возможность подбора жидкостей с различными точками кипения и замерзания;
— низкая растворимость воды и высокая растворимость газов;
— отсутствие растворимости любых нефторированных материалов;
— высокий коэффициент температурного расширения.
Проведенные нами исследования поведения некоторых жидкостей при постоянном и переменном напряжении показывают, что по электрофизическим параметрам: удельное сопротивление, tg d , электрическая прочность, они значительно превосходят аналогичные показатели любых других жидкостей, включая минеральные масла. Они нетоксичны, неокисляемы, имеют низкую вязкость, в.т.ч. в низкотемпературной области. Ряд жидкостей имеют точку замерзания -70 ° С и ниже. Основное препятствие к более широкому использованию — сравнительно высокая цена. Это препятствие может быть устранено. В настоящее время имеется задел по разработке новой, более дешевой технологии получения перфторуглеродов.
Приведем численные значения некоторых электрофизических параметров. Диэлектрическая проницаемость e =1.8-2, tgd (1012-1015) Ом·м, электрическая прочность — до 500 кВ/см. Важной особенностью является достаточно высокая электрическая прочность в газообразном (парообразном) состоянии — до 200-300 кВ/cм, т.к. фторуглеродные молекулы имеют высокое сродство к электрону, т.е. они являются электроотрицательными веществами. Из других свойств отметим не только негорючесть, но и термостабильность до температуры более 400 ° С. Хотя теплопроводность фторуглеродов в два-три раза ниже, чем у трансформаторного масла, однако исключительно высокий коэффициент температурного расширения приводит к возникновению мощных конвективных потоков. При этом конвективный теплоотвод оказывается в 3-4 раза выше, чем у трансформаторного масла. Главный недостаток — дороговизна — они дороже трансформаторного масла в несколько десятков раз.
К настоящему времени в энергетике эти жидкости не нашли широкого применения. За рубежом применяются для охлаждения мощных выпрямителей и инверторов, преобразующих переменный ток в постоянный ток, для СВЧ устройств. Предполагаемое создание компактных пожаробезопасных испарительных трансформаторов для электротранспорта и компактных ЗРУ возможно только на основе перфторуглеродных жидкостей.»
Но последнее уже другая история-))))))))))))))))))))
С уважением Андрей.
а где я говорил про трансформаторное масло :))) мы используем масло, которое применяется в качестве теплоносителя для охлаждения/подогрева горющих жидкостей в химической промышленности 🙂
насчёт трансформаторного масла я не знаю :)))
у меня его нет — когда будет, то я его поподжигаю и тогда смогу об этом написать.
Для эксперимента попробуй поджечь масло Тоталь Рейсинг 10w50 :)))
С уважением, МАХ.
Re:Есть такая забавная штука как «Правила безоп По поводу правил безопасности — согласен на все 100%.
По поводу масла — трансформаторное масло имеет теплоемкось больше воды, температуру кипения выше, не электропроводно, не корозионно.
Но не бюджетно совсем.
В трансформаторах горят обмотки, возникает дуга. Там такие температуры, что гореть начинает метал как спичка. 🙂
Источник
Теплопроводность
Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.
Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Задачи:
- изучить теоретический материал по данному вопросу;
- исследовать теплопроводность твердых тел;
- исследовать теплопроводность жидкостей;
- исследовать теплопроводность газов;
- сделать выводы о полученных результатах.
Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.
Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.
Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина
Содержание работы
Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Опыт 1. Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня
Внесем в огонь конец деревянной палки. Он воспламенится.
Вывод: дерево обладает плохой теплопроводностью.
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.
Вывод: стекло имеет плохую теплопроводность.
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.
Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.
Опыт 2. Исследование теплопроводности жидкостей на примере воды
Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.
Вывод: теплопроводность жидкостей меньше теплопроводности металлов.
Опыт 3. Исследование теплопроводности газов
Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.
Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.
Выводы и их обсуждение
Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.
Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:
металлы (серебро, медь, железо)
пористые тела, пробка, бумага, стекло, кирпич, пластмассы
волосы, перья птиц, шерсть
Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Применение теплопроводности
Теплопроводность на кухне
Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.
Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.
Отопительная система
Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.
Теплопроводность для тепла
Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.
Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.
Теплолечение
Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.
Теплопроводность в бане
Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.
Интересные факты о теплопроводности
Тепло ли колючим зверям в иголках?
Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?
Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.
Полипропилен
Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.
Какой материал имеет самую высокую теплопроводность?
Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.
Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?
Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
«Огнеупорный шарик»
Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.
Источник