Что воспламеняется при соприкосновении с водой

Способность взрываться и гореть при взаимодействии с водой и другими веществами

Способность взрываться и гореть при взаимодействии с водой и другими веществами – явление, при котором источником зажигания служит тепловое проявление химической реакции, а горючим веществом является как исходное вещество, так и продукты его взаимодействия с водой или др. веществом. Щелочные, щёлочноземельные и некоторые др. металлы, а также их соединения: гидриды, карбиды, сульфиды и т.д. при взаимодействии с водой образуют горючие газы: водород, метан, сероводород, ацетилен и т.д., которые при благоприятных условиях способны воспламеняться от теплоты реакции и гореть над поверхностью воды или образовывать с воздухом взрывоопасные смеси. Горючие вещества в смеси с окислителями или при контакте с ними способны гореть при наличии источника зажигания. В качестве окислителя, кроме кислорода воздуха, могут служить: газообразные (фтор, хлор, окислы азота, озон и т.д.); жидкие (серная кислота, азотная кислота, перекись водорода и т.д.); твёрдые вещества (перманганаты, персульфаты, перекиси металлов и т.д.).
Способность взрываться и гореть при взаимодействии с водой и др. веществами следует учитывать при организации хранения или транспортирования пожаровзрывоопасных веществ (материалов), а также при проведении технологического процесса, в котором участвуют несовместимые друг с другом вещества.

Литература: Саушев В.С. Пожарная безопасность хранения химических веществ. М., 1982.

Способ дезактивации – совокупность операций с использованием средств дезактивации для удаления радиоактивных загрязнений с поверхности.

Читайте также:  Колонки с водой расстояние

Способность к самовозгоранию, см. Самовозгорание.

Источник

Вещества, самовозгорающиеся при контакте с водой

Химическое самовозгорание

Химическим называется самовозгорание, возникающее в результате химического взаимодействия веществ.

К этой группе материалов относятся калий, натрий, рубидий, цезий, карбид кальция и карбиды щелочных металлов, гидриды щелочных и щелочноземельных металлов, фосфиды кальция и натрия, силаны, негашеная известь, гидросулъфид натрия и др.

Щелочные металлы — калий, натрий, рубидий и цезий — взаимодействуют с водой с выделением водорода и значительного количества тепла

Выделяющийся водород самовоспламеняется и горит совместно с металлом только в том случае, если кусок металла по объему больше горошины. Взаимодействие указанных металлов с водой иногда сопровождается взрывом с разбрызгиванием расплавленного металла. Также ведут себя гидриды щелочных и щелочноземельных металлов (КН, NаН, СаН2) при взаимодействии с небольшим количеством воды

При взаимодействии карбида кальция с небольшим количеством воды выделяется столько тепла, что в присутствии воздуха образующийся ацетилен самовозгорается. При большом количестве воды этого не происходит.

Карбиды щелочных металлов (например, Nа2С2, К2С2 при соприкосновении с водой взрываются, причем металлы сгорают, а углерод выделяется в свободном состоянии

Фосфид кальция Са3Р2 при взаимодействии с водой образует фосфористый водород (фосфин)

Фосфин РН3 является горючим газом, но самовозгораться не способен. Совместно с РН3 выделяется некоторое количество жидкого Р2Н4 , который способен самовозгораться на воздухе и может быть причиной воспламенения РН3.

Силаны, т. е. соединения кремния с различными металлами, например Мg2Si, Fе2Si при действии воды выделяют водородистый кремний, самовозгорающийся на воздухе

Вещества, самовозгорающиеся при контакте с окислителями.

Многие вещества, в основном органические, при смешении или прикосновении с окислителями способны самовозгораться. К окислителям, вызывающим самовозгорание таких веществ, относятся сжатый кислород, галогены, азотная кислота, перекись натрия и бария, перманганат калия, хромовый ангидрид, двуокись свинца, селитры, хлораты, перхлораты, хлорная известь и др. Некоторые из смесей окислителей с горючими веществами способны самовозгораться только при воздействии на них серной или азотной кислот или при ударе и слабом нагревании.

Сжатый кислород вызывает самовозгорание веществ (минерального масла), которые не самовозгораются в кислороде при нормальном давлении.

Хлор, бром, фтор и иод чрезвычайно активно соединяются с некоторыми горючими веществами, причем реакция сопровождается выделением большого количества тепла и вещества самовозгораются. Так, ацетилен, водород, метан и этилен в смеси с хлором самовозгораются на свету или от света горящего магния. Если указанные газы присутствуют в момент выделения хлора из любого вещества, самовозгорание их происходит даже в темноте

Нельзя хранить галогены вместе с легко воспламеняющимися жидкостями. Известно, что скипидар, распределенный в каком-либо пористом веществе (в бумаге, ткани, вате), самовозгорается в хлоре. Пары диэтилового эфира могут также самовозгораться в атмосфере хлора

Красный фосфор моментально самовозгорается при соприкосновении с хлором или бромом.

Смесь четыреххлористого углерода СС14 или четырехбромистого углерода со щелочными металлами при нагревании до 70 °С взрывается.

Азотная кислота, разлагаясь, выделяет кислород, поэтому является сильным окислителем, способным вызвать самовозгорание ряда веществ.

При соприкосновении с азотной кислотой самовозгораются скипидар и этиловый спирт.

Растительные материалы (солома, лен, хлопок, древесные опилки и стружки) самовозгораются, если на них попадет концентрированная азотная кислота.

При соприкосновении с перекисью натрия способны самовозгораться следующие горючие и легковоспламеняющиеся жидкости: метиловый, этиловый, пропиловый, бутиловый, изоамиловый и бензиловый спирты, этиленгликоль, диэтиловый эфир, анилин, скипидар и уксусная кислота. Некоторые жидкости самовозгорались с перекисью натрия после введения в них небольшого количества воды. Так ведут себя уксусноэтиловый эфир
(этилацетат), ацетон, глицерин и изобутиловый спирт. Началом реакции служит взаимодействие воды с перекисью натрия и выделение при этом атомарного кислорода и тепла

Атомарный кислород в момент выделения окисляет горючую жидкость, и она самовозгорается. Порошок алюминия, опилки, уголь, сера и другие вещества в смеси с перекисью натрия моментально самовозгораются от попадания на них капли воды.

Сильным окислителем является перманганат калия КМпО4. Его смеси с твердыми горючими веществами крайне опасны. Они самовозгораются от действия концентрированных серной и азотной кислот, а также от удара и трения. Глицерин С3Н5(ОН)3 и этиленгликоль С2Н4(ОН)2 самовозгораются в смеси с перманганатом калия через несколько секунд после смешения.

Сильным окислителем является также хромовый ангидрид. При попадании на хромовый ангидрид самовозгораются следующие жидкости: метиловый, этиловый, бутиловый, изобутиловый и изоамиловый спирты; уксусный, масляный, бензойный, пропионовый альдегиды и паральдегид; диэтиловый эфир, этил ацетат, амилацетат, метилдиоксан, диметилдиоксан; уксусная, пеларгоновая, нитрилакриловая кислоты, ацетон.

Смеси селитр, хлоратов, перхлоратов способны самовозгораться при действии на них серной, а иногда азотной кислоты. Причиной самовозгорания является выделение кислорода под действием кислот.

При действии серной кислоты на бертолетову соль происходит следующая реакция:

Хлорноватая кислота малоустойчива и при образовании распадается с выделением кислорода

Источник

Какие вещества воспламеняются при контакте с водой?

Самые известные вещества, которые воспламеняются при контакте с водой — это щелочные металлы: натрий, калий, рубидий и цезий (натрия нужно довольно много, иначе может прореагировать без пламени, а цезий можно не донести до воды — воспламенится на воздухе). Воспламениться могут также карбиды щелочных металлов и их гидриды типа КН. Могут от паров воды воспламениться пирофорные (очень тонкие порошки) металлов, многие металлоорганические соединения, фтор. Некоторые смеси воспламеняются от одной или нескольких капель воды; например, смесь порошков магния и иода или же магния и азотнокислого серебра. И т.д.

В лабораторных условиях получить воду можно многими способами.

Способ первый. Сжигаем водород (из баллона) в воздухе и в результате реакции, известной каждому школьнику: 2Н2 + О2 = 2Н2О, получаем пары воды. Если вода нужна в жидком состоянии, охлаждаем пары и получаем жидкую воду.

Способ второй. Сжигаем углеводородное топливо — метан, пропан-бутан, бензин и т.д. и т.п. Можно и парафин сжечь, только труднее добиться полного сгорания без копоти. В результате всех этих реакций горения образуется углекислый газ и вода. Например, в случае горения метана: СН4 + 2О2 = СО2 + 2Н2О. Углекислый газ выпускаем в воздух (а можно поглотить щелочью), а пары воды конденсируем.

Способ третий. Берем кристаллогидрат, например, медный купорос, алюмокалиевые квасцы, глауберову соль (10-водный сульфат натрия) и греем, обычно сильного нагревания не требуется. Вода отщепляется от кристаллов и ее легко отогнать и сконденсировать.

Наверное, можно припомнить еще несколько принципиально других методов, когда одним из продуктов химической реакции является вода.

Раньше считалось,что при повторном кипячении в воде появляется «тяжёлый водород»! И эта «пугалка» срабатывала достаточно долго! Кипячёная вода хоть единыжды хоть трижды, есть вода без минеральных солей,а стало быть для повседневного питья абсолютно не полезная! Зато там нет микробов, это уж точно! А это актуально для стран с климатом тропическим или субтропическим! Так что пить кипяченую воду в Средней полосе не вредно но и абсолютно бесполезно, ибо вода для питья должна содержать необходимые для организма минеральные соли! Так что,прокипятив воду дважды Вы только удалите остатки минеральных солей,оставшихся после 1-го кипячения, только и всего! В заключении добавлю, что важно не то сколько раз вы «перекипячиваете» воду а в чём именно:

В советское время в прессе часто встречались критические материалы примерно такого содержания «Я конечно этот роман не читал, но со всей ответственностью заявляю, что автор неправ. » и т.п. Так вот, я тоже, диссертацию Менделеева, посвящённую исследованию свойств водно-спиртовых смесей (каких именно не знаю), не читал, но со всей ответственностью заявляю, что к водке вообще, и в частности к тому, что за стандарт водки принято 40 процентное содержание (по объёму) спирта, Менделеев никакого отношения не имеет.

Вот примерно так. А тем, кто не верит, рекомендую ознакомиться непосредственно с диссертацией Дмитрия Ивановича.

Потому что соль выводит из воды кислород. Именно он так сильно бурлит, а потом перестает, потому что уже весь испарился. Даже рекомендуется при варке овощей и мяса воду сначала слегка присолить, чтобы удалить из неё кислород, который убивает полезные вещества.

Вода на Земле находится в трех агрегатных состояниях, а главное — происходит постоянный переход воды из одного состояния в другое. Именно это и является самым главным свойством Земли как планеты, которое способствовало сначала формированию постоянной географической оболочки, потом появлению жизни, потом биосферы, потом ноосферы. Постоянный переход воды из одного состояния в другое позволил растениям освоить фотосинтез, а всем организмам планеты — дыхание. Оба процесса основаны на переходе жидкой воды в газообразную и обратно. По причине постоянного перехода воды из одного состояния в другое существуют гидросфера и атмосфера как постоянные структуры планеты, а твердая вода выполняет функции буфера в этом жизнеутверждающем переходе из одного состояния в другое.

Источник

Вещества, воспламеняющиеся и вызывающие горение при воздействии на них воды

Вещества, воспламеняющиеся при взаимодействии с воздухом

Вопрос 3. Самовозгорание химических веществ

Среди огромного множества химических соединений есть большая группа веществ, способных воспламеняться (взрываться) и гореть при взаимодействии с кислородом воздуха, водой и другими веществами. Обычно считают склонными к химическому самовозгоранию вещества и материалы с температурой самонагревания ниже 50 °С.

К ним относятся:

• Карбиды и гидриды щелочных металлов.

• Порошкообразные металлы — цинк, алюминий, железо, никель, кобальт, титан, цирконий

• Сульфиды металлов — серный колчедан или пирит FeS2.

Так, например, гидриды щелочных металлов — натрия, калия, рубидия и цезия интенсивно взаимодействуют с влагой воздуха по реакции: МеН + Н20 » МеОН + Н2Т.

Среди сульфидов металлов серный колчедан или пирит FeS2 является компонентом ископаемых углей и руд черных и цветных металлов. Другие сульфиды железа — FeS и Fe2S3 — образуются в технологических аппаратах, трубопроводах и резервуарах, где перерабатываются, транспортируются и хранятся серосодержащие вещества (высокосернистые нефти и нефтепродукты, сероводородсодержащие газы и др.). При температурах до 200 °С органическая сера гидролизуется с выделением сероводорода, который реагирует с продуктами коррозии железа с образованием сульфида: 2Fe(OH)2 + 3H2S -> Fe2S3 + 6Н20.

При температуре выше 200 °С органическая сера способна выделяться в чистом виде и вступать с железом в реакцию: Fe+S -> FeS + 100 кДж.

Сульфиды железа легко самовозгораются на воздухе, что является довольно частой причиной пожаров и взрывов в горнодобывающей и перерабатывающей промышленности, а также на транспорте. Сульфиды многих других металлов также склонны к самонагреванию и самовозгоранию, особенно в измельченном состоянии и при соприкосновении с влажным воздухом.

К ним относятся:

• Гидриды и карбиды щелочных и щелочноземельных металлов.

• Металлоорганические соединения и др.

Щелочные металлы реагируют с водой с выделением водорода и большого количества теплоты по общей схеме: 2Ме + 2Н20 -» 2МеОН + Н2Т + Q.

Многие металлоорганические соединения чрезвычайно чувствительны к кислороду — производные щелочных и щелочноземельных металлов, некоторых элементов 3 и 5 групп периодической системы. Низшие их алкильные производные (метилаты, этилаты и другие) самовоспламеняются на воздухе. Производные щелочных и щелочно-земельных металлов (Be, Mo, Zn, Cd, Ga, In) бурно реагируют с водой, причем многие из них с самовоспламенением выделяющегося углеводорода.

Помимо упомянутых имеется большая группа пожароопасных веществ, энергично взаимодействующих с водой с выделением самовоспламеняющихся на воздухе газов. Например, силициды металлов (Mg2Si, Fe2Si и т.д.) разлагаются водой с образованием силана, который самовозгорается на воздухе:

Некоторые неорганические соединения сильно разогреваются при взаимодействии с водой, как, например оксид кальция СаО (негашеная известь). При попадании небольшого количества воды на негашеную известь она разогревается до яркого свечения и может поджечь соприкасающиеся с ней горючие материалы.

Источник

Оцените статью