- Коэффициент преобразования = Т2 / (Т2 — Т1)
- Коэффициент преобразования = 328К / (328К — 274К) = 6,07
- Принцип работы земляного теплового насоса
- Преимущества и недостатки насосов грунт вода
- СОР теплового насоса. Определение, формула, расчет
- Что такое СОР теплового насоса?
- Реальный опыт эксплуатации теплового насоса «воздух-вода»
- Выбираете энергоэффективные решения?
- Геотермальный тепловой насос EU (старт/стоп)
- Геотермальный тепловой насос IQ (псевдоинвертор)
- Геотермальный тепловой насос IQ (инвертор)
- Тепловой насос «воздух-вода» — реальные факты
- Можно ли дешево отопить загородный дом зимой тепловым насосом «воздух-вода»
Коэффициент преобразования = Т2 / (Т2 — Т1)
где Т1 — температура источника тепла (грунта, воды, воздуха), Т2 — температура воды в отопительном контуре (температура воды, циркулирующей в трубках теплого пола, теплого плинтуса). Таким образом, величина COP зависит от температуры источника тепла и температуры в системе отопления дома(на входе и выходе теплового насоса).
При расчете коэффициента преобразования температура рассчитывается в Кельвинах, то есть в абсолютных величинах, отсчитываемых от абсолютного ноля. Для перевода градусов Цельсия в Кельвины, к первым необходимо прибавить 273 градуса.
Формула на конкретном примере:
Например, геотермальный тепловой насос собирает энергию грунта при температуре +1 Цельсия, или 274 Кельвина и отдает эту энергию воде в отопительном контуру при температуре +55 Цельсия или 328 К. Получается следующая формула:
Коэффициент преобразования = 328К / (328К — 274К) = 6,07
Однако следует помнить, что такой расчет дает слишком завышенное значение, так как рассчитывается исходя из того, что все составляющие теплового насоса работают со 100% КПД, то есть сами не потребляют энергии. В реальности же, компрессор и другие составляющие теплового насоса значительно снижают значение коэффициента преобразования.
Нормальным считается коэффициент со значением 3. Такое и выше значение можно получить сохраняя минимальную разницу температур на входе и выходе из ТН. На температуру наружного источника тепла (грунта, воды, воздуха) повлиять невозможно, поэтому необходимо стараться поддерживать на более низком уровне температуру на выходе из теплового насоса. Именно поэтому теплые полы, работающие при температурах около 30 градусов идеально подходят для работы с тепловым насосом.
Источник
Принцип работы земляного теплового насоса
Альтернативные источники энергии в наше время достаточно актуальны. Установка тепловых насосов частое явление сегодня, так как тарифы на газ и электроэнергию стали достаточно большими и люди стараются сократить свои растраты. Земляной тепловой насос (рис. 1) – это устройство, которое берет тепловую энергию из грунта и передает ее воде в системе отопления.
Следует отметить, что грунт является хорошим источником тепла, которое не иссекается, так как грунт вбирает солнечную энергию и тепло недр. Земля сохраняет стабильную температуру не зависимо от времени года и погодных условий. Например, на глубине 4 — 5 метров температурный режим может быть уже от 8 ˚С и до 12 ˚С.
Конструкция системы с тепловым насосом земля-вода:
· Земляной зонд или коллектор;
· Теплообменник, который транспортирует тепловую энергию к внутреннему контуру;
· Теплообменник, который передает тепловую энергию в систему отопления;
· Система отопления и горячего водоснабжения внутри дома.
Система грунтового теплового насоса имеет в своей схеме 3 контура. Внешний контур находится в земле, собирая там тепловую энергию. Второй контур – это сам тепловой насос, теплоноситель попадает в испаритель, где температура поднимается. А третий контур – это уже непосредственно система отопления в доме, в которой циркулирует вода.
За 1 час циркулирует 2-3 м3 теплоносителя. Этот теплоноситель нагревается в земле на 5-70С. Земляной зонд теплового насоса грунт вода, то есть теплообменник, который закопан на определенную глубину, собирает тепловую энергию. И с помощью теплоносителя эта энергия переносится в тепловой насос, а именно в испаритель. Теплоносителем может быть антифриз или смесь воды и пропиленгликоля или этиленгликоля. Часто в системе циркулирует фреон (хладагент) в жидком состоянии, который в испарителе сжимается и превращается в газ. Особенностью фреона является то, что он закипает при низкой температуре. Когда он закипает, то расширяется и пары, которые образуются, попадают в конденсатор.
Далее это тепло попадает к другому теплообменнику, в котором циркулирует уже вода для системы отопления дома. После того как фреон остыл, он обратно преобразуется в жидкое состояние, и циркулирует в грунтовой теплообменник. Процесс начинается заново.
Внешний теплообменник устройства грунт вода выглядит как полиетиленовая тонкостенная труба, ее диаметр может быть 4 см. Приблизительный расчет длины змеевика, который закапывается, такой: 5 погонных метров трубы соответствует 1 м2 площади дома. Можно сделать вывод, что если площадь дома 150 м2, то длина змеевика должна быть 750 метров погонных.
Преимущества и недостатки насосов грунт вода
Тепловой насос грунт-вода имеют такие преимущества :
· Автономность установки. Насос грунт вода не зависит от энергоносителей, для потребления этой тепловой энергии не нужны никакие разрешения и проекты.
· Экологичность. Тепловые насосы это установки, от которых нет вредных выбросов в атмосферу, а также используется неиссякаемая энергия Земли.
· Безопасность. Это отопление безопасно, так как максимальная температура здесь достигает 600С, а значит оборудование пожаробезопасно и взрывоопасно.
· Универсальное оборудование. Грунтовой насос можно использовать совместно с газовым или другим котлом.
· Небольшие затраты при эксплуатации грунтового насоса. Установке грунт вода не нужно никакое дополнительное обслуживание.
Недостатки земляных тепловых насосов:
· Высокая стоимость. Сама по себе установка стоит достаточно дорого, а также, чтобы ее установить, нужны большие затраты. Работа спецтехники, установка теплообменника и т.д. это все дорогостоящие услуги. Это оборудование намного дороже котельного оборудования.
· Срок эксплуатации грунтового насоса становит около 25 лет. С такой стоимостью это не так уж и много. После этого срока, как правило, нужен либо ремонт, либо бурение другой скважины.
Источник
СОР теплового насоса. Определение, формула, расчет
Что такое СОР теплового насоса?
Это значение показывает во сколько раз тепловой насос производит больше энергии, чем потребляет сам, то есть определяет разницу между производимой и потребляемой тепловым насосом энергией.
К примеру, тепловой насос с коэффициентом преобразования 4 к каждому потребленному им кВт производит еще дополнительные 3 кВт тепловой энергии. Таким образом, из каждых 4 кВт энергии, затрачиваемых на отопление, платить приходиться только за 1 кВт.
В теории СОР теплового насоса определяется следующей формулой:
Коэффициент преобразования = Т2 / (Т2 — Т1)
где Т1 — температура источника тепла (грунта, воды, воздуха),
Т2 — температура воды в отопительном контуре (температура воды, циркулирующей в трубках теплого пола, теплого плинтуса).
Таким образом, величина СОР зависит от температуры источника тепла и температуры в системе отопления дома(на входе и выходе теплового насоса).
При расчете коэффициента преобразования температура рассчитывается в Кельвинах, то есть в абсолютных величинах, отсчитываемых от абсолютного ноля. Для перевода градусов Цельсия в Кельвины, к первым необходимо прибавить 273 градуса.
Формула на конкретном примере:
Например, геотермальный тепловой насос собирает энергию грунта при температуре +1 Цельсия, или 274 Кельвина и отдает эту энергию воде в отопительном контуру при температуре +55 Цельсия или 328 К. Получается следующая формула:
Коэффициент преобразования = 328К / (328К — 274К) = 6,07
Однако следует помнить, что такой расчет дает слишком завышенное значение, так как рассчитывается исходя из того, что все составляющие теплового насоса работают со 100% КПД, то есть сами не потребляют энергии. В реальности же, компрессор и другие составляющие значительно снижают СОР теплового насоса .
Нормальным считается коэффициент со значением 3. Такое и выше значение можно получить сохраняя минимальную разницу температур на входе и выходе из ТН. На температуру наружного источника тепла (грунта, воды, воздуха) повлиять невозможно, поэтому необходимо стараться поддерживать на более низком уровне температуру на выходе из теплового насоса.
Именно поэтому теплые полы, работающие при температурах около 30 градусов идеально подходят для работы с тепловым насосом.
ТАБЛИЦА COP ДЛЯ ТЕПЛОВЫХ НАСОСОВ СЕРИИ CAR-XB
Источник
Реальный опыт эксплуатации теплового насоса «воздух-вода»
Выбираете энергоэффективные решения?
Обратите внимание на геотермальные тепловые насосы FORUMHOUSE
Геотермальный тепловой насос EU (старт/стоп)
Геотермальный тепловой насос IQ (псевдоинвертор)
Геотермальный тепловой насос IQ (инвертор)
Постоянный рост цен на энергоносители заставляет собственников загородной недвижимости задуматься, как сократить затраты на отопление. Один из вариантов — построить утеплённый дом с минимальными теплопотерями. Второй шаг — смонтировать низкотемпературную систему отопления. Третье — нагреть теплоноситель тепловым насосом класса «воздух-вода». На первый взгляд кажется, что это — неоправданно дорогое решение, а воздушный тепловой насос будет неэффективно работать зимой. Проверим, так ли это, на примере пользователей FORUMHOUSE, которые установили в доме тепловые насосы.
- Отопление зимой тепловым насосом «воздух-вода» — миф или реальность
- Сколько тепла вырабатывает тепловой насос «воздух-вода» при отрицательных температурах
- Выводы и рекомендации
Тепловой насос «воздух-вода» — реальные факты
Этот вид теплового оборудования вызывает массу споров. Пользователи делятся на два лагеря. Одни считают, что, для отопления дома, ничего лучше не придумано. Другие полагают что, из-за дороговизны тепловых насосов (ТН) и суровых климатических условий во многих регионах РФ, первоначальные вложения не отобьются. Выгоднее положить деньги в банк, а, на полученные проценты, отапливать дом электричеством. Как всегда, истина посередине. Забегая вперёд скажем, что, в статье речь пойдёт только о тепловых насосах «воздух-вода». Сначала немного теории.
Источники тепла для теплового насоса:
Важный момент: Тепловой насос не производит тепло. Он перекачивает тепло из внешней среды к потребителю, но, чтобы тепловой насос функционировал, требуется электричество. Эффективность работы теплового насоса выражается в соотношении перекаченной тепловой энергии к потреблённой из электрической сети. Эта величина называется коэффициент трансформации теплоты COP (coefficient of performance). Если в технических характеристиках теплового насоса заявлено, что COP = 3, то, это означает, что ТН перекачает в три раза больше тепла, чем «возьмёт» электричества.
Кажется, что вот оно, — решение всех проблем — условно говоря, потратив за один час 1 кВт электричества мы, за это время, получим 3 киловатт-часа тепла для системы отопления. В действительности, т.к. речь идёт о воздушных тепловых насосах с внешним блоком, установленным снаружи дома, коэффициент трансформации за отопительный сезон будет варьироваться в зависимости от температуры на улице. В сильные морозы (-25 — -30 °C и ниже) СОР воздушника падает до единицы.
Это останавливает загородных жителей от установки тепловых насосов «воздух-вода» — оборудования, в котором перекаченное тепло используется для нагрева жидкого теплоносителя. Люди считают, что для наших условий — не южных регионов страны, лучше всего подходят геотермальные тепловые насосы с закопанным в землю грунтовым теплообменником — системой труб, уложенных горизонтально или вертикально.
Я часто сталкиваюсь с мифом, что тепловой насос «воздух-вода» неэффективен в морозы, а вот геотермальный ТН — самый то. Сравните коэффициент трансформации теплоты оборудования весной. Геотермальный контур после зимы истощен. Хорошо если там температура около 0 градусов. А вот воздух уже достаточно прогрет. Потребность в тепле уменьшается, но не пропадает летом, т.к. горячее водоснабжение нужно круглый год. Геотермальные ТН отлично подходят для регионов с суровой зимой и длительным отопительным периодом. Для Южного федерального округа и Московской области ТН «воздух-вода» показывает сравнимый с геотермальником среднегодовой СОР.
Можно ли дешево отопить загородный дом зимой тепловым насосом «воздух-вода»
Я инженер. С 2003 года профессионально занимаюсь промышленными холодильниками и климатическими системами и поэтому в теме ТН. В феврале 2017 года я купил дом без внутренней отделки в пригороде Воронежа. Встал вопрос, как отопить коттедж. Была возможность за 400 тыс. руб. завести на участок магистральный газ. Но я выбрал тепловой насос «воздух-вода». На покупку потратил 8 тыс. евро и ничуть не жалею об этом.
Прежде, чем рассказать об эксплуатационных затратах Bavares36 и выгоде использования теплового насоса, опишем, а это важно знать, конструктив дома:
- Отапливаемая площадь двухэтажной «коробки» 130 кв. м.
- «Пирог» стен — панели из арболита толщиной 3.5 см, монолитный сердечник цемент + опилки — 25 см, несъёмная опалубка — пенопласт толщиной 9 см, отделка — декоративная штукатурка 0.5 см. Итого: общая толщина стены – 38 см.
- Перекрытие второго этажа деревянное.
- Крыша утеплена пенопластом толщиной 14 см.
- В доме, на первом и втором этаже, установлены большие окна в пол.
- Отопление.
- На первом этаже дома смонтировано 8 контуров низкотемпературной системы отопления — тёплый пол (6 контуров) и теплые стены (2 контура).
- На втором этаже 6 отопительных контуров. Два контура теплых стен. Теплый пол в ванной и три контура в комнатах.
- Система ГВС.
- В доме два санузла. Водопотребители — ванная, душ + мойка на кухне.
- В системе ГВС стоит циркуляционный насос.
- Дополнительно в доме, в санузлах, установлены полотенцесушители.
Для теплоснабжения дома используется тепловой насос «воздух-вода». Оборудование смонтировано и запущено 5 октября 2017 года. Важный нюанс! У ТН «воздух-вода» основная цена приходится на внутренний блок, т.к. в нём находятся: ТЭНы для нагрева воды для ГВС и для дополнительного нагрева теплоносителя в сильные морозы, теплоаккумулятор и прочее оборудование.
Переходим к цифрам. За шесть месяцев отопительного сезона Bavares36 потребил, по данным выделенного на ТН электросчётчика, электроэнергии:
- октябрь — 1000 кВт*ч;
- ноябрь -1000 кВт*ч;
- декабрь — 1000 кВт*ч;
- январь — 1700 кВт*ч;
- февраль — 1900 кВт*ч;
- март — 1900 кВт*ч.
Итого, общее потребление, с октября по март, составило 8500 кВт*ч. Тариф на электроэнергию — 2.52 руб. за 1 кВт*ч. Теперь считаем сколько заплатил пользователь за отопительный сезон включая ГВС: 8500х2.25= 21420 рублей.
За теплый период (с апреля по сентябрь включительно) счетчик теплового насоса «намотал» порядка 2500 киловатт-часов. Т.е. — 6300 руб. Итого, за календарный год, затраты на отопление и горячее водоснабжение — 27720 рублей. Я считаю, что тепловой насос «воздух-вода» отлично подходит для моих климатических условий. ТЭНы подключались периодически, при большом потреблении воды и при морозах -25 градусов Цельсия. А это всего две недели за зиму.
Для полноты картины приведём наблюдения пользователей портала, также эксплуатирующих тепловые насосы «воздух-вода».
У меня дом площадью 250 кв. м построенный из газобетона. Толщина газосиликатных блоков – 300 мм. Стены снаружи утеплены каменной ватой толщиной 10 см и оштукатурены. На первом этаже смонтированы теплые полы. Установленная температура +23 °C. На втором этаже радиаторы. Температуру выставил +24 °C.
Сначала пользователь отапливал дом электрокотлом мощностью 24 кВт. Потом, коттеджей в поселке стало больше, и начались проблемы с подачей электричества. Vovanadm поставил твердотопливный котел мощностью 30 кВт. Но ему быстро надоело быть кочегаром. В итоге пользователь установил тепловой насос «воздух-вода». Почему? Не нужно копать или бурить землю на участке под грунтовый теплообменник. ТН потребляет 2.35 кВт в час. СОР в отопительный сезон 3. Это дешевле, чем отапливать дом электричеством. Далее пользователь хочет перейти на дневной-ночной тариф. Ниже прилагаются фото со смонтированной системой и потреблёнными киловатт-часами с конца сентября по конец октября.
Источник