- Как при помощи стакана с водой получить спектр
- 6.2. Дисперсия света
- Дисперсия света. Цветовой диск Ньютона
- Введение
- I. Теоритическая часть
- 1.1. Открытие Исаака Ньютона
- 1.2. Спектральный состав света
- 1.3. Дисперсия света
- 1.4. Радуга
- II. Практическая часть
- 2.1. Демонстрация экспериментов по наблюдению дисперсии света
- Эксперимент №1. Получение радужного спектра на мыльных пленках
- Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму
- Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду
- 1.2. Цветовой диск Ньютона
- Заключение
Как при помощи стакана с водой получить спектр
В 1667—1668 годах Ньютон, великий английский ученый, производил опыты со светом и открыл, что белый луч света не простой, а сложный. При некоторых условиях, например при прохождении через стеклянную призму, световой луч разлагается на лучи разных цветов.
Явление разложения света называется дисперсией. Окрашенная полоса, полученная на экране при прохождении света через призму, называется спектром. Опыты Ньютона положили начало спектроскопии — науки о составе света и разложении световых лучей.
В природе мы наблюдаем дисперсию света в виде радуги. Капельки дождя играют ту же роль, что и призмы.
Ученые открыли, что каждое вещество — твердое, жидкое или газообразное — в сильно раскаленном состоянии испускает свой спектр.
Открыв это, ученые научились определять по спектрам, что за вещества и в каких количествах содержатся в сплавах металла, пищевых продуктах, атмосфере и даже в небесных телах.
Сделайте опыты с получением спектра водяными призмами. Возьмите тонкостенный стеклянный стакан. Налейте в него чистой воды и накройте куском стекла. Места соединения стекла со стаканом залепите пластилином или воском. Теперь наклоните стакан так, как показано (рис. 112), направляя свет лампы на получившуюся водяную призму. На белом листе бумаги, на столе, вы увидите красивый спектр. Здесь же вы увидите, что больше всего отклонится к основанию призмы фиолетовый цвет, меньше всего — красный.
Очень наглядный опыт, одновременно показывающий и прямолинейное распространение света, преломление света и разложение белого луча на основные цвета, проделайте с помощью круглого стакана с водой, плотного картона с двумя прямоугольными прорезями и экрана — листа белой бумаги.
Рисунок 113 показывает схему расположения различных предметов при проведении опыта.
Если у вас есть трехгранный стеклянный флакон, наполните его водой и поставьте на пути лучей. Он будет очень хорошо выполнять роль призмы.
Источник
6.2. Дисперсия света
Дисперсия света — это зависимость показателя преломления n вещества от длины волны света (в вакууме)
или, что то же самое, зависимость фазовой скорости световых волн от частоты:
Дисперсией вещества называется производная от n по
Дисперсия — зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.
Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)
Нормальная дисперсия вещества — это отрицательная дисперсия
Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия
оказывается положительной и называется аномальной (рис. 6.7, область 2–3).
Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны l вблизи одной из полос поглощения ()
Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).
Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие — на экране возникает спектр
Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).
Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).
Рис. 6.9. Возникновение радуги
Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).
Рис. 6.10. Расположение радуги
Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51°, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя — в красный. Радуги третьего и высших порядков наблюдаются редко.
Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.
При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:
где v — скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно
Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:
Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:
Таким образом, можно считать, что при прохождении через вещество электромагнитной волны на каждый электрон действует только электрическая сила:
где — амплитуда напряженности электрического поля в световой волне,
— фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде
где, — собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили
Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.
Атом со смещенным электроном приобретает дипольный момент
(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде
В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда еi и массы тi, а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний Nk пропорционально концентрации атомов N:
Безразмерный коэффициент пропорциональности fk характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:
Источник
Дисперсия света. Цветовой диск Ньютона
Введение
Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.
В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.
Все эти явления связаны с понятием «свет». В обыденной речи «свет» мы используем в самых разных значениях: ученье – свет, а неученье – тьма, свет мой, солнышко, скажи … В физике термин «свет» имеет гораздо более определенное значение. Опытным путем было установлено, что свет нагревает тела, на которое падает. Следовательно, он передает этим телам энергию. Мы также знаем, что одним из видов теплопередачи является излучение, следовательно, Свет – это электромагнитное излучение, воспринимаемое человеческим глазом и вызывающее зрительные ощущения. Свет обладает множественными свойствами, одним таким свойством света является – дисперсия. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Поэтому мы выбрали тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и мы постараемся в своем проекте представить все моменты, происходящие в истории развития науки о свете и показать опыты по демонстрации дисперсии света, а так же свою экспериментальную установку, разработанную специально для наблюдения дисперсии света, которая впоследствии может быть использована на уроках физики при изучении данной темы.
Цель проекта – изучение понятия «Дисперсия света» и изготовление экспериментальной установки «Цветовой диск Ньютона».
Задачи:
- Изучить историю открытия И. Ньютоном явления Дисперсия света.
- Рассмотреть спектральный состав света.
- Дать понятие о дисперсии света.
- Подготовить эксперименты по наблюдению дисперсии света.
- Рассмотреть природное явление радуга.
- Изготовить экспериментальную установку «Цветовой диск Ньютона».
I. Теоритическая часть
1.1. Открытие Исаака Ньютона
В 1665–1667 годах Исаак Ньютон – английский физик и математик занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, даваемое объективом, по краям окрашено, данное наблюдение его очень заинтересовало, и он решил разгадать природу возникновения цветных полос. В это время в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов». Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор. Главный опыт был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов (рис. 1).
Рисунок 1. Эксперимент И. Ньютона
1.2. Спектральный состав света
Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).
Рисунок 2. Разложение белого пучка света на спектр
Спектр – (от латинского «spectrum» – видение) непрерывный ряд цветных полос, получается путем разложения луча белого света на составные части (рис. 3).
Рисунок 3. Спектр
Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.
Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.
1.3. Дисперсия света
Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.
Дисперсией называется явление разложения света на цвета при прохождении света через вещество.
Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.
Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света (рис. 4).
Рисунок 4. Преломление светового луча
Закон преломления света: падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.
sin α | = n21 |
sin β |
где n21 – относительный показатель преломления второй среды относительно первой.
При изменении угла падения α меняется и угол преломления β , но при любом угле падения отношения синусов этих углов остается постоянным для данных двух сред.
sin α | = n. |
sin β |
Если луч переходит в какую-либо среду из вакуума, то
sin α | = n, |
sin β |
где n – абсолютный показатель преломления второй среды.
Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.
Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.
Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что
Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:
sin α | = n21 = | V1 |
sin β | V2 |
Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.
Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.
Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.
Абсолютный показатель преломления стекла n, из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).
Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму
1.4. Радуга
Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).
Рисунок 6. Природное явление радуга
Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.
Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).
Рисунок 7. Преломления света в капле дождя
Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.
Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.
Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).
Рисунок 8. Схема образования радуги относительно наблюдателя
Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).
Рисунок 9. Радуга с борта самолета
II. Практическая часть
2.1. Демонстрация экспериментов по наблюдению дисперсии света
Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.
Эксперимент №1. Получение радужного спектра на мыльных пленках
Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.
Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.
Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму
Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).
Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.
Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду
Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.
Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.
1.2. Цветовой диск Ньютона
Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).
Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет
На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).
Рисунок 11. Цветной диск Ньютона
Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).
Рисунок 12. Экспериментальная установка по получению белого света из спектра
Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.
В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).
Рисунок 13. Результат вращения цветового диск Ньютона
Окраска круга при вращении желтовато-белая по двум причинам:
- Скорость вращения круга очень низкая по сравнению со скоростью света;
- Круг окрашен с резкими цветовыми переходами, если сравнивать со спектром разложения белого света.
Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.
Заключение
Окружающий нас мир играет красками: нас радует и волнует голубизна неба, зелень травы и деревьев, красное зарево заката, семицветная дуга радуги. В своем проекте мы попытались ответить на вопрос — как можно объяснить удивительное многообразие красок в природе. В целом поставленная цель об изучении такого явления как дисперсия света в итоге достигнута. Для того чтобы глубже понять такое свойство света как дисперсия, была изучена дополнительная литература по световым явлениям, были проведены эксперименты по наблюдению явления, была изготовлена установка для вращения цветового круга Ньютона с некоторой скоростью.
В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:
- Дисперсия – явление разложения белого света в спектр.
- Белый цвет имеет сложную структуру, состоящий из нескольких цветов.
- При падении света на границу раздела двух прозрачных сред световые лучи различной цветности преломляются по разному (наиболее сильно-фиолетовые лучи, менее других- красные).
- Призма не изменяет цвет, а лишь разлагает его на составные части.
Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.
Источник