Движение вода по корню растений

Передвижение воды по растению

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы. Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам. Апопласт — это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы.

Симпласт— это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодемам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему.

Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа.

Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления обладают и между водой и стенками сосудов.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключается из общего тока проведения воды. Таков путь передвижения воды по растению.

Скорость перемещения воды по растению в течение суток изменяется. В дневные часы она на много больше. При этом разные виды растений различаются по скорости передвижения воды. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды. Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление. Однако надо учитывать, что в более широкие сосуды могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.

Источник

Передвижение воды в растениях

Различные органы растения выполняют разные функции. Листья синтезируют органические вещества, поэтому в них должны постоянно поступать вода и минеральные вещества. Корни поглощают воду и минеральные вещества и нуждаются в притоке органических веществ для дыхания и роста. Цветки, плоды и растущие верхушки растений являются потребителями органических веществ, значительная часть которых откладывается в запас. Все это вызывает необходимость передвижения в растении воды и растворенных в ней веществ.

Вода и растворенные в ней вещества передвигаются в растении в основном двумя путями: путем диффузии и в виде потока. Диффузия воды и веществ осуществляется по градиенту концентрации и подчиняется закону Фика. Движение в виде потока происходит по градиенту гидростатического давления, по градиенту потока вода движется и через мембраны при наличии градиента осмотического или тургорного давления.

Такое передвижение наиболее ярко выражено у древесных растений. Исследования показали, что по стволу дерева вещества передвигаются в двух основных направлениях: от корней к листьям вверх движутся вода и минеральные вещества — восходящий поток; второй, несущий органические вещества вниз к корню, — нисходящий поток. Но органические вещества из листьев поступают не только в корневую систему, они движутся также к морфологической верхушке, цветкам и плодам. Поэтому нисходящий поток лучше назвать потоком пластических веществ.

В существовании двух потоков — восходящего и пластических веществ — можно убедиться на опыте, сущность которого заключается в следующем. Делают кольцевой надрез на стволе дерева или на одном из побегов первого или второго порядка. На побеге вырезают паренхиму коры кольцом шириной в несколько сантиметров. Чтобы избежать высыхания, место выреза обматывают тканью или замазывают садовым варом. Через некоторое время над кольцом вследствие приостановки нисходящего потока образуется наплыв — каллус. Если кольцо не очень широкое, оно обычно срастается.

При образовании такого кольца растение некоторое время хорошо растет, тургесцентное состояние клеток остается нормальным, происходит передвижение воды и растворенных в ней веществ. Наплыв над кольцом образуется вследствие разрастания клеток коровой паренхимы и скопления в них пластических веществ — углеводов, органических кислот и др. Если кольцо достаточно широкое и не срастается, то пластические вещества не будут поступать в корневую систему, она истощится и дерево или побег погибнет.

Восходящий поток идет по сосудам и трахеидам, которые являются мертвыми полыми клетками и сами по себе не обладают сосущей или какой-либо иной силой, способной привести воду в движение. Вследствие вогнутости менисков в сосудах, представляющих собой капилляры, вода может подняться при их диаметре 0,1 мм не выше 30 см. Однако вода в древесных растениях поднимается на десятки метров, поэтому капиллярными силами, транспирацией и корневым давлением это объяснить нельзя.

Вода в сосудах как бы подвешена к испаряющим клеткам в виде тонких нитей. Нижним концом они упираются в сосудах в клетки корневых волосков. Непрерывность водных нитей обусловливается силами взаимного сцепления молекул воды и силами прилипания их к клеточным стенкам сосудов. О существовании водных нитей в растении свидетельствуют многочисленные факты и наблюдения, например уменьшение диаметра стеблей растений и стволов деревьев в результате интенсивной транспирации. Чтобы вода передвигалась вверх, испаряющие клетки должны иметь достаточную сосущую силу, которая в клетках листовой паренхимы бывает довольно большой (достигает 2-4 тыс. кПа и более). Одним из факторов, поддерживающих сосущую силу на высоком уровне, является непрерывная транспирация. Таким образом, движение воды по сосудам объясняется наличием в растении водных нитей, присасывающей силой транспирации и корневым давлением.

Сила сцепления молекул воды в растениях велика. Так, в клетках спорангиев папоротника она превышает 40 тыс. кПа. Исследованиями установлено, что этого вполне достаточно, чтобы не разорвались водные нити, которые заполняют сосудистые полости высокого дерева.

Прочное сцепление (когезия) между молекулами воды и прилипание (адгезия) их к гидрофильным стенкам клеток ксилемы предотвращает образование полостей (кавитацию) в находящемся в ксилеме растворе почти в любых условиях. Однако при сильном дефиците воды в отдельных трубках ксилемы кавитация все же происходит. Убедиться в этом можно следующим образом: если к стволу дерева прижать чувствительный микрофон, то будет слышно потрескивание. Такие трубки ксилемы уже не восстанавливаются, но камбий может образовывать новые.

Силы сцепления молекул воды и присасывающее действие транспирации можно продемонстрировать на таком опыте. Гипсовый блок или ветку сосны герметично присоединяют каучуковой трубкой к пипетке, заполненной водой и погруженной в ртуть. Вода, испаряясь с поверхности гипсового блока или хвои, благодаря силам сцепления между молекулами ртути и воды тянет за собой ртуть, которая и будет подниматься по пипетке. Таким образом, присасывающее действие транспирации и силы сцепления воды в растении обусловливают движение ее на несколько десятков метров.

Вопрос об участии живых клеток древесины в движении воды в растении и связанные с этим явления изучены еще недостаточно. На основании ряда работ считали, что живые клетки древесины и древесной паренхимы имеют способность проталкивать через себя воду, засасывать ее, например, нижним концом и выделять верхним в сосуды, т. е. при этом как бы происходит пульсация воды в клетках. Предполагали, что такое передвижение воды с участием живых клеток идет в заболони— внешнем слое древесины, который прилегает к камбию. Однако дальнейшие исследования этого не подтвердили. Кроме того, считали, что существуют особые клапаны, которые также способствуют перемещению воды в растении. Исследования Е. Ф. Вотчала, изучавшего передвижение воды по стволу дерева, находившегося в горизонтальном положении, этого не подтвердили.

Некоторые исследователи (Т. Беннет-Кларк, Д. Биксон, Р. Гёбер и др.) важным фактором в регулировании водного баланса клеток считают электроосмос. Это — движение молекул воды, несущих электрический заряд вдоль поверхности раздела (например, по стенкам пор мембран). Электроосмотическое движение жидкости происходит в результате возникновения двойного. электрического слоя на поверхности раздела жидкость—твердое тело. При погружении мембраны в раствор, содержащий электролиты, ее поверхность приобретает заряд (для естественных мембран обычно отрицательный), который возникает в результате процесса ионизации поверхности мембран или вследствие адсорбции ионов из раствора. Жидкость возле поверхности мембраны несет заряд, противоположный по знаку, и образует слой, обладающий подвижностью. Он обусловлен разностью потенциалов, вызванной наличием в растворе электролитов, соприкасающихся с мембраной.

Аномальное движение частиц может приводить к превышению наблюдаемого давления над осмотическим, обусловленному электроосмотическим потоком воды через поры мембраны. Для осуществления электроосмотического потока жидкости необходимо наличие проницаемой мембраны, имеющей систему пор различной величины; электролитов в соответствующих концентрациях по обе стороны мембраны; постоянной диффузии электролитов.

Абсолютная скорость передвижения воды по древесине у лиственных пород составляет 20 см 3 , хвойных — 5 см 3 на 1 см 2 поперечного среза древесины в час. В опытах с мечеными атомами установлено, что скорость движения воды по ксилеме составляет 12-14 м/ч.

При перемещении воды по дереву по вертикали в гравитационном поле водный потенциал возрастает примерно на 1 бар до 10 м, так как известно, что гидростатическое давление 101,3 кПа может поддерживать столб ртути высотой 76 см или столб воды 10,3 м. Но вода в деревьях поднимается на 20-40 м и выше, что обусловливается преимущественно величиной сосущей силы транспирации и силами сцепления молекул воды.

Наблюдения показали, что в жаркое время дня имеющиеся в листьях запасы воды полностью обновляются приблизительно каждый час. Такой высокий уровень расхода влаги растением может быть обеспечен лишь при большой скорости движения ее по ткани.

Таким образом, благодаря верхнему (транспирация) и нижнему (корневое давление) двигателям водного потока и силам сцепления молекул в сосудах происходит передвижение и поднятие воды по растению на большую высоту. Путь, который проходит вода по растению, делится на две неравные части: первая — движение воды по сосудам и трахеидам (этот путь составляет от нескольких сантиметров до нескольких метров); вторая — движение водного потока по живым клеткам (его протяженность выражается в миллиметрах и даже долях миллиметра). Во вторую часть водного потока входят два коротких участка: первый — в корне, от корневого волоска до сосуда, находящегося в центральном цилиндре; второй — в листе, от жилок до испаряющих клеток мезофилла (рис. 20).


Рис. 20. Начальный и конечный отрезки пути водного потока в растении:
A — корень; Б — лист (простыми стрелками показан путь, который проходит вода, оперенными — путь водяного пара).

Движение воды по сосудам можно показать на таком примере. Букет цветов сохраняет свежесть, если вода будет свободно поступать в перерезанные сосуды. Поэтому, чтобы в стеблях не образовывались так называемые воздушные пробки, рекомендуется обрезать их на 5-10 см под водой.

По сосудам вода течет, как по полым трубкам, подчиняясь общим законам гидродинамики. В паренхимных клетках вода движется осмотическим путем, и передвижение ее в живых клетках значительно затруднено. Но основным двигателем водного потока в растениях является сосущая сила паренхимных клеток листьев, или присасывающее действие транспирации.

О природе приспособительных реакций к недостатку воды у разных групп растений. Транспирирующие органы — листья — характеризуются значительной пластичностью, в зависимости от условий произрастания в их строении наблюдаются довольно большие изменения. Даже листья одного растения при разных условиях водоснабжения и освещения имеют различия в анатомической структуре.

Установлены определенные закономерности в строении листьев в зависимости от расположения их на растении. В. Р. Заленский обнаружил изменения в анатомическом строении листьев по ярусам. Он установил, что у листьев верхнего яруса наблюдаются закономерные изменения в сторону усиления ксероморфизма, т. е. образуются структуры, повышающие засухоустойчивость этих листьев. Установленные им закономерности называют законом Заленского. Листья, расположенные в верхней части стебля, всегда отличаются от нижних, а именно: чем выше расположен лист на стебле, тем меньше размеры его клеток, тем больше на нем устьиц и меньше их размеры, больше волосков на единицу поверхности, гуще сеть проводящих пучков, сильнее развита палисадная ткань. Все эти признаки характеризуют ксерофилию, т. е. образование структур, способствующих повышению засухоустойчивости.

С определенной анатомической структурой связаны и физиологические особенности, а именно: верхние листья отличаются более высокой ассимиляционной способностью и более интенсивной транспирацией. Концентрация сока в верхних листьях также более высокая, в связи с чем может происходить оттягивание воды верхними листьями от нижних, засыхание и отмирание нижних листьев. Структура органов и тканей, обусловливающая повышение засухоустойчивости растений, называется ксероморфизмом. Отличительные особенности структуры листьев верхнего яруса объясняются тем, что они развиваются в условиях несколько затрудненного водоснабжения.

Физиологические причины ксероморфной структуры следует рассматривать как изменения цепи ферментативных реакций, вызванных недостатком воды и приводящих к торможению роста клеток в фазе растяжения.

Ксероморфная структура листьев растений вызывается тем, что дефицит воды проявляется прежде всего в период ранней приостановки роста эпидермиса — эпидермальных клеток. В нормальных условиях фаза растяжения приостанавливается вначале на нижнем мезофилле.

Для уравнения баланса между поступлением и расходом воды в растении образовалась сложная система анатомо-физиологических приспособлений. Такие приспособления наблюдаются у ксерофитов, гигрофитов, мезофитов. Большой интерес в связи с этим представляют исследования Б. А. Келлера, который изучал анатомо-физиологические особенности у растений резко различающихся экологических групп, но близких между собой в систематическом отношении. Он исследовал многолетние травянистые растения (род Asperula) из семейства Мареновые. Одни из них были типичными степными растениями, а другие — теневыносливыми, лесными.

Степной вид ясменника колокольчиковидного (Asperula glauca) имеет сизые узкие иглообразные толстые листья с сильно развитой двуслойной палисадной паренхимой, края листьев немного загнуты вниз. Это типичный ксерофит, растущий на открытой местности в степной зоне или полупустынях. Второй вид — ясменник душистый (Asperula odorata) — характерен для влажных и очень тенистых участков лиственного леса; у растений этого вида широкая и тонкая пластинка, однослойная палисадная ткань, состоящая из укороченных и рыхлорасположенных клеток. Было проведено сравнительное изучение анатомического строения и интенсивности транспирации у обоих видов (табл. 4).

Таблица 4. Анатомическое строение и интенсивность транспирации у степных и лесных видов растений (по Н. А. Максимову)

Вид Длина сети жилок
листа, мм
Количество
устьиц
Интенсивность
транспирации, %
Asperula glauca 100 100 100
Asperula odorata 30 14 45

Такие же исследования провел Б. А. Келлер с двумя видами подмаренника: весенним (Galium verum) и крестовидным (Galium cruciata). Полученные им данные также свидетельствуют о том, что условия произрастания оказывают большое влияние на анатомическую структуру и физиологические особенности растения. Если ксерофиты одновременно являются гелиофитами, то мезофиты и даже гигрофиты необязательно относятся к теневыносливым растениям.

При выращивании фасоли (опыт Н. А. Максимова) на различном расстоянии от источника света (электрическая лампа) было установлено, что у сильнее освещенных экземпляров устьиц на листе было приблизительно в 4 раза больше, чем у плохо освещенных, размеры клеток эпидермиса в 3-4 раза меньше и сеть жилок значительно гуще. Таким образом, степень освещенности и нагревания сильно влияет на анатомическое строение.

Н. А. Максимов проведенными исследованиями опроверг господствовавшие в физиологии того времени взгляды на засухоустойчивость как на биологически обоснованную потребность растения в недостаточном водоснабжении, как на сухолюбне. Его исследования показали, что засухоустойчивость следует понимать как приспособительное свойство растений переносить глубокое завядание с наименьшим вредом не только для данной особи, но и для всего вида.

Различие между стойкими и нестойкими к засухе растениями обусловлено характером тех изменений в обмене веществ, которые возникают у растения под влиянием обезвоживания. Так, уровень обводненности ткани у неустойчивых к засухе сортов пшеницы выше по сравнению с устойчивыми. Кроме того, у неустойчивых сортов наблюдается более высокий уровень гидролитического действия ферментов углеводного и белкового обменов. Однако эти признаки непостоянны и проявляются лишь в условиях полного насыщения водой, а при нарушении водоснабжения быстро утрачиваются. Результаты исследований показали, что приспособительные свойства у засухоустойчивых форм растений возникают под влиянием условий их существования.

Источник

Читайте также:  Вода с натрием двууглекислым
Оцените статью