- Как это работает. Акваланг
- Как учились дышать под водой
- Устройство и принцип работы акваланга
- События, связанные с этим
- Triton: искусственные жабры, позволяющие дышать под водой
- Устройство ExoLung обеспечит подводных пловцов бесконечным запасом воздуха
- Позволят ли «искусственные жабры» оставлять акваланг дома?
- Как это работает
- Хука – воздух с поверхности для дайверов
- Как работает хука-система
- Типичный курортный хука-дайвинг
- Персональные хука-системы
- Опасности хука-системы
Как это работает. Акваланг
Первый такой аппарат был запатентован в 1866 году, а широкой общественности стал известен чуть позже из романа Жюля Верна «Двадцать тысяч лье под водой». Привычное нам название появилось уже в XX столетии благодаря двум французам – морскому офицеру Жаку Иву Кусто и инженеру Эмилю Ганьяну. В 1943 году они основали фирму Aqua Lung («водяное легкое»). Продукция компании быстро обрела популярность в мире, а название «акваланг» стало определением подобных аппаратов во многих странах.
В России один из ведущих создателей аквалангов – Научно-производственное предприятие «Респиратор» холдинга «Технодинамика». Продукцией «Респиратора» пользуются как дайверы, так и профессиональные водолазы. На примере одной из последних моделей предприятия – воздушно-дыхательного аппарата АВМ-15 – рассказываем, как устроен и работает современный акваланг.
Как учились дышать под водой
Исследовать подводный мир и чувствовать себя «как рыба в воде» человек стремился с древних времен. Первые конструкции, которые помогали дышать под водой, описаны еще Аристотелем в 332 году до нашей эры. Не обошел вниманием разработку таких аппаратов и сам Леонардо да Винчи. Его изобретение внешне напоминает современные акваланги – мешок с дыхательной смесью, который крепится к груди железными обручами, загубник и бронзовый зажим для носа. Чертежи Леонардо да Винчи так и остались на бумаге, а первый автономный дыхательный аппарат, который получил практическое применение, появился только в 1865 году. Его создатели – французы Бенуа Рукейроль и Огюст Денейруз – назвали новинку «Аэрофором». Аппарат представлял собой стальной баллон с воздухом под давлением 20-25 атмосфер, соединенный через редуктор с загубником. Мембранный редукционный клапан – это и было главным открытием и залогом популярности «Аэрофора». Это маленькое новшество позволяло подавать воздух только в момент вдоха под нужным давлением. Аппарат использовался военно-морским флотом, про него рассказывал Жюль Верн в своей книге «Двадцать тысяч лье под водой».
«Аэрофор» можно назвать «предком» современного оборудования открытого цикла дыхания, то есть со вдохом воздуха из баллона, а выдохом в воду. До современных «собратьев» «Аэрофору» оставался всего один шаг – увеличить запас воздуха, используя его под более высоким давлением. На практике это осуществил в 1933 году капитан французского военного флота Ив Ле Приор. Ему удалось повысить давление в баллоне до 100 атмосфер, но пришлось использовать закрытую схему дыхания – выдох производился в маску.
Спустя десять лет Жак Ив Кусто и Эмиль Ганьян совершенствуют дыхательный аппарат и доводят его до того вида, который мы знаем сегодня. Это два баллона с воздухом (100-150 атмосфер) и редуктор, подающий воздух под правильным давлением, причем только в момент вдоха.
Кусто и Ганьян назвали свою компанию Aqua Lung. Слово «акваланг» очень быстро стало нарицательным во многих странах, в том числе и у нас. В английском языке такие аппараты чаще называют SCUBA (Self-contained Breathing Underwater Apparatus).
Современные акваланги, конечно, отличаются от самых первых аппаратов Кусто-Ганьяна. За эти годы существенно изменились технологии, появились новые материалы. К примеру, натуральная резина и латунь уступили место более прочным пластикам – силикону и полиуретану. Усовершенствовались также конструкции загубника и клапанов, а баллоны стали изготавливать из современных композитов. Однако, принципиальная схема аквалангов не изменилась. Рассмотрим ее на примере воздушно-дыхательного аппарата АВМ-15, который производится в НПП «Респиратор» – одном из ведущих в стране разработчиков воздушно-дыхательного оборудования .
Устройство и принцип работы акваланга
Основные части любого современного акваланга – это баллон с воздухом под высоким (200-300 атмосфер) давлением и двухступенчатый редуктор. Модель АВМ-15 включает два баллона емкостью по семь литров. Кроме сжатого воздуха в аппарате могут использоваться обогащенные кислородом искусственные дыхательные смеси (NITROX и т.п.). Такие составы делают нахождение на глубине под действием большего давления более комфортным для нашего организма.
Дышать напрямую из баллона под давлением 200 атмосфер невозможно. Поэтому к баллону присоединяется специальный двухступенчатый редуктор. Первая ступень снижает давление до нормального значения. В зависимости от конструкции и модели оно может быть разным. В аппарате АВМ-15 рабочее давление не превышает 19,6 Мпа.
Вторая ступень редуктора называется регулятором, отвечает за две важные функции. Во-первых, подает воздух под давлением, равным давлению воды на любой глубине. Ведь даже находясь на метровой глубине уже тяжело вздохнуть. Поэтому просто необходимо компенсировать давление воды. Во-вторых, регулятор следит за тем, чтобы воздух для дыхания подавался только в момент вдоха. Очевидно, что это помогает расходовать воздух намного экономнее. Выдыхает аквалангист прямо в воду. Таким образом, воздух используется всего один раз, а АВМ-15 относится к дыхательным системам открытого цикла.
Как видно, АВМ-15 по своему устройству и принципу работы схож с другими аквалангами своего класса. При этом он обладает некоторыми особенностями, которые делают работу профессиональных водолазов и дайверов еще комфортней. К примеру, в состав аппарата входит запатентованное сигнальное устройство «пузырькового» типа, которое предупреждает, когда основной запас воздух заканчивается. Аппарат может быть использован и при минусовых температурах. Незамерзающий АВМ-15 уже прошел «экзамен» в Антарктике – его использовали для подводных погружений члены экспедиции проекта «13 морей России».
События, связанные с этим
Взрывная история: старейшему производителю тротила – 110 лет
Профессии Ростеха: разработчик VR-тренажеров
Источник
Triton: искусственные жабры, позволяющие дышать под водой
Году эдак в 2014 в сети появилась информация о концепте Triton, который представляет из себя компактный дыхательный аппарат, позволяющий дышать под водой. Своего рода искусственные жабры, нечто подобное было показано в фильме «Thunderball» о Джеймсе Бонде 1965 года. Тогда устройство было исключительно на уровне концепта. Похоже, что разработчикам удалось добиться результатов за это время и они уже запустили кампанию для сбора денег на IndieGoGo, которая уже собрала более $850 000 из $50 000, которые были запланированы изначально.
По утверждению разработчиков, устройство Triton позволяет свободно дышать под водой на протяжении 45 минут не используя какого-либо вспомогательного оборудования типа аквалангов. Triton представляет из себя устройство 29х12 см. Внутри: литий-ионный аккумулятор, светодиодный модуль и вибромотор для сигналов, клапан для вывода воздуха, небольшая воздушная камера и микрокомпрессор, нагнетающий кислород. Исходя из официального описания, в боковых трубках размещены водные фильтры с микропористой мембраной, поры которой меньше молекул воды, что позволяет «вытягивать» кислород непосредственно из воды.
Там же расположен модуль со специальным химическим составом, который смешивается с кислородом для получения дыхательной смеси (как мы помним, при большой концентрации кислорода, можно получить кислородное отравление). Искусственные жабры Triton позволяют свободно дышать под водой на протяжении 45 минут (время работы аккумулятора), глубина погружения — не более 4.5 метров. На большей глубине устройство начнет подавать предупредительные сигналы, а дышать станет сложнее.
Предзаказ на Triton можно сделать за $300, розничная цена будет $400, начало поставок планируется на декабрь.
Источник
Устройство ExoLung обеспечит подводных пловцов бесконечным запасом воздуха
Изобретатель Йорг Трагашнинг представил прототип сверхлегкого дыхательного аппарата для подводного плавания, который имеет бесконечный ресурс работы, так как не зависит от внешних источников энергии. Он работает исключительно на мускульной силе самого пловца, не создавая серьезной дополнительной нагрузки. Это компактное, дешевое и простое средство для исследования подводного царства.
В основе ExoLung лежит хорошо известный принцип автономной поверхностной подачи воздуха, когда к дыхательной маске пловца подводится шланг, второй конец которого прикреплен к небольшому бую. Тот служит воздухозаборником и своего рода якорем, он ограничивает перемещения человека длиной шланга и имеет яркую окраску, чтобы сигнализировать о местонахождении ныряльщика. А поскольку буй плавучий, пловец может легко перемещать его за собой по водоему.
Особенность ExoLung в том, что здесь есть промежуточный воздушный мешок, куда закачивается воздух от буя. Происходит это за счет движения простой диафрагмы, которая крепится ремнями к ногам – когда пловец сгибает и выпрямляет их для движения, он одновременно накачивает воздух в мешок. Здесь нет никаких источников энергии. ExoLung работает, пока человек движется. На случай, если тот устанет, длина шланга ограничена 5 метрами, чтобы хватило сил подняться на поверхность.
Разработчик утверждает, что для применения ExoLung достаточно пройти базовый курс подводного плавания. Весит аппарат всего 3,5 кг, его габариты 40x30x20 см, что позволяет носить его с собой в рюкзаке «на всякий случай», для исследования прибрежных зон и внутренних водоемов во время путешествий. Пока устройство не готово для продажи, его разработчик ищет партнеров для запуска производства. Цена будет колебаться от $330 до $500, в зависимости от комплектации и наличия усиленных модулей.
Источник
Позволят ли «искусственные жабры» оставлять акваланг дома?
Приветствуем вас на страницах блога iCover! Далеко не все проекты на краудфандинговых площадках достигают своей конечно цели – потребителя. Еще меньшему их числу удается удержаться на плаву и войти в нашу жизнь, быт, работу и отдых в качестве привычных составляющих. Одним из таких проектов может стать “Тритон”, авторы которого попытались взглянуть на «феномен Ихтиандра» через призму современных возможностей и технологий.
Итак, встречайте, обсуждайте, одобряйте, критикуйте. Неоднозначный проект “искусственные жабры” или Triton (“Тритон”) продолжает свое шествие по краудфандинговой платформе Indiegogo и, несмотря на определенный скепсис со стороны научного сообщества, уверенно преодолел намеченный целевой рубеж.
Идея, что в одночасье небольшой симпатичный гаджет, напоминающий руль от детского велосипеда сможет заменить собой сложную и габаритную систему доставки живительного кислорода и справиться с функциями жабр была воспринята научным сообществом весьма настороженно. Любопытно, что это уже вторая кампания “Triton” на платформе Indiegogo. Первая, стремительно дошедшая до отметки в $1 млн. была так же стремительно свернута, после чего начата вновь, но уже несколько в обновленном виде. На этот раз в качестве более весомого аргумента скептически (отчасти обоснованно) настроенным научным кругам авторы предложили сразу несколько видеороликов.
Как это работает
В своем нынешнем исполнении аппарат, заключенный в герметичный ударопрочный корпус размером 29 х 12 см с баллонами, наполняемыми кислородом позволяет находиться и дышать под водой в течение 45 минут на глубине до 4.5 м. Ясно, что при такой длительности погружения речь о какой-то специальной подготовке спортсмена, равно как и об ее отсутствии не идет.
12 минут перед камерой на дне бассейна – достаточно веский аргумент в пользу «Triton»
Рекламный ролик проекта
Ограничение связано с емкостью модифицированной литий-ионной батареи, обеспечивающей работу электронной схемы устройства, в состав которого вошли: вибромоторчик и LED-модуль сигнализации, микро-компрессор, обеспечивающий, как утверждают авторы проекта, требуемую интенсивность нагнетаемого потока кислорода, воздушная камера, где осуществляется преобразование кислорода в воздух, пригодный для дыхания и клапан для отвода выдыхаемого воздуха, фильтры и мембраны.
Вибрации и светодиодный индикатор в нужный момент известят дайвера о опасном уровне заряда батареи и необходимости всплывать на поверхность для “подзарядки”.
Структурная схема блока
Демо ролик, поясняющий концепцию “искусственные жабры”
Стоимость новинки на платформе $299. В продажу, как обещают авторы “Тритона”, гаджет поступит уже в декабре текущего года по цене $399.
Страничка проекта на Indiegogo
Уважаемые читатели, мы всегда с удовольствием встречаем и ждем вас на страницах нашего блога. Мы готовы и дальше делиться с вами актуальными новостями, обзорными материалами и другими публикациями, и постараемся сделать все возможное для того, чтобы проведенное с нами время было для вас полезным. И, конечно, не забывайте подписываться на наши рубрики.
Источник
Хука – воздух с поверхности для дайверов
Один из моих любимых документальных фильмов о взаимодействии людей с океаном — Human Planet от BBC. Очень советую всем посмотреть. Мы часто показываем его вечерами на наших фридайв-кемпах и трипах. Самый впечатляющий момент фильма для меня — сюжет о паалинских рыбаках на Палаване, которые ловят рыбу сетями, дыша под водой через обычные садовые шланги, воздух по которым подается из компрессора на корабле. Вот здесь на Youtube есть часть этого сюжета. Молодые парни суют шланги, из которых фигачит воздух прямо в рот без всяких регуляторов. Шланги травят и путаются друг с другом. Компрессор допотопный. Из-за больших глубин, быстрого всплытия и долгого нахождения под водой у многих развивается декомпрессионная болезнь. Полный ад!
И вот недавно узнал, что у этого занятия есть даже название — хука-дайвинг. Для него производится профессиональное оборудование, которое используется в некоторых местах для развлечения туристов и рекреационного дайвинга. По аналогии со SCUBA (аквалангом) называется это SNUBA и даже есть организация Snuba International. Ниже перевод статьи о хука-дайвинге с Deeperblue.
Хука (от англ. Hookah – кальян) или система подачи воздуха с поверхности для дайвинга, как отдыха и развлечения, стала очень популярна во многих местах по всему миру. Курорты продают этот вид отдыха, как смесь подводного плавания с дайвингом без необходимости сертификации. В то время, как различные поставщики оборудования могут добавлять свое собственное имя этому занятию, в целом используется термин хука-дайвинг. По сути, хука-система обеспечивает человека под водой воздухом, источник которого находится на поверхности. Воздушный шланг, тянущийся от источника воздуха к регулятору, связывает человека с системой. В существующих системах встречаются различные вариации.
Наибольшее отличие состоит в том, являются ли системы динамическими или статическими. Динамическая система использует воздушный компрессор, чтобы обеспечить необходимый воздух при надлежащем давлении. Эти системы часто имеют небольшой накопительный резервуар, чтобы гарантировать постоянное давление. Поскольку воздух удаляется из резервуара, компрессор подкачивает новый для поддержания давления. Компрессоры могут быть свободно плавающими или зафиксированными. Они также могут быть бензиновыми или электрическими. Статическая система использует цилиндр сжатого воздуха в качестве источника воздуха для дайверов. Во многих статических системах для этого используется акваланг.
Системы могут быть зафиксированными или плавающими. Зафиксированные системы могут быть размещены на пристани, но чаще устанавливаются на лодке. Многие яхты, которые используют воздух под высоким давлением для различных систем, имеют выходные отверстия для подключения к шлангу. Хука-дайвинг оказался очень удобен для осмотра корпусов лодок, очистки гребных винтов и других рутинных работ по техническому обслуживанию. В плавающей системе источник воздуха имеет поплавок, так что дайверы могут тянуть его за собой. Статья, опубликованная в прошлом году на сайте The SUSiE Chronicles: Хука-дайвинг для науки, дает некоторое представление о преимуществах использования хука-системы для исследований на небольшой глубине.
Как работает хука-система
Проще говоря, шланг соединяет источник воздуха и регулятор, который обеспечивает дайвера воздухом. Некоторые системы имеют по одному воздушному шлангу, который часто называют даунлайн (down—line), идущему от источника воздуха к регулятору, для каждого дайвера. Другие системы имеют один даунлайн, к которому подключен воздушный шланг и регулятор для каждого дайвера. Эта система дает каждому дайверу немного больше свободы и снижает риск спутывания даунлайнов.
Дайвер использует стандартную маску и ласты. Хука-дайверы не надевают компенсатор плавучести (BCD), вместо этого они надевают ремень. Основной целью ремня является обеспечение точки крепления для даунлайна. Если даунлайн за что-то зацепится, то он дернет за ремень, а не за регулятор, который мог бы при этом выпасть изо рта. Дайвер также одевает грузовой пояс. Наиболее распространенный дизайн предусматривает съемные весовые карманы. Дайверы нагружаются для поддержания нейтральной плавучести. Так как на них нет баллона с воздухом, который изменяет плавучесть, когда они дольше они остаются под водой, то их плавучесть не меняется в течение дайва.
Обычно дайвер использует для дыхания стандартный двухступенчатый регулятор. Существуют системы, предназначенные для 1-4 дайверов.
Типичный курортный хука-дайвинг
Во многих отношениях хука-дайвинг на курорте очень похож на дайвинг с аквалангом. Участники начинают с короткого урока, на котором им объясняют, чего ожидать, требования безопасности, а также обучают нескольким навыкам, таким как очистка маски. Затем с инструктором они погружаются на глубину около 6 метров / 20 футов. В некоторых местах нормы и правила требуют, чтобы гид имел лицензию и использовал акваланг. Так как дайверы привязаны к поплавку, риск того, что участник может потеряться или уйти на глубину, намного меньше.
Персональные хука-системы
Хука-системы имеют огромную гибкость за пределами курортной зоны для дайвинга. Наиболее распространенные конфигурации позволяют максимум 4 дайверам спуститься на 18 метров / 60 футов. Что эквивалентно новичкам аквалангистам (Open Water Diver). Некоторые системы могут позволять двум дайверам опускаться до 30 метров / 100 футов (глубина продвинутых дайверов). Первоначальная стоимость хука-системы для одного дайвера примерно такая же, как первоначальный набор SCUBA-дайвера. Тем не менее, хука-система для двух или даже четырех дайверов незначительно больше. Это делает их менее дорогими, чем несколько комплектов. Операционные расходы также низкие, на галлоне бензина большинство компрессоров может работать в течение пяти часов при подаче воздуха для четырех дайверов.
Опасности хука-системы
В хука-дайвинге и дайвинге с аквалангом используется сжатый воздух. Риски использования сжатого воздуха на глубине остаются такими же, независимо от того, где находится его источник. Операторы на курортах спешат указать на то, насколько они безопасны. Производители хука-систем утверждают, что это относительно безрисковая активность, и большинство статистических данных это подтверждают. Тем не менее, имейте в виду, что в основном хука-дайвингом занимаются на глубине менее 12 метров и практически весь дайвинг, предлагаемый на курортах, происходит на глубинах менее 9-ти. На этой глубине декомпрессионная болезнь является редкостью и для хука-дайвинга, и для погружения с аквалангом. Есть еще некоторые большие проблемы безопасности.
Первой и, может быть, основной является проблема обучения. Дайверы должны быть сертифицированы для погружений. Конечно, есть много дайверов, которые не получали сертификаты, но их меньшинство. Основные производители и дистрибьюторы хука-систем рекомендуют обучение и у некоторых даже есть учебные онлайн-программы. У некоторых агентств по сертификации аквалангистов есть обучение на воде для хука-дайверов. Тем не менее, нет обязательной профессиональной подготовки.
Вот интересная статистика из Тасмании. Недавний отчет показал, что количество обращений с декомпрессионной болезнью были примерно равны для аквалангистов и хука-дайверов. Несмотря на то, что по оценкам у аквалангистов таких случаев в пятнадцать раз больше. После опроса выяснилось, что более 90% хука-дайверов ничего не знали о рисках глубокого погружения и не знали о том, что такое декомпрессионная болезнь. Ни один из 90% не получил никакого обучения. Следует помнить, что количество воздуха, которое хука-дайвер получает на глубине, контролируется топливом компрессора. Таким образом, возможны погружения на 2-3 часа. Хука-дайверы, выполняющие те же процедуры, что и аквалангисты, планирующие погружение и имеющие подводный компьютер, могут снизить риск наступления декомпрессионной болезни.
Второй серьезной проблемой является пригодность оборудования. Концепция хука-системы очень проста, не сильно отличается от той, какой она была в 1700-х годах. Конечно, были сделаны улучшения в компрессорах, и регуляторы, которые также используются при погружениях с аквалангом, помогают. Тем не менее, есть много людей, делающих их самостоятельно. Они собирают системы, которые имеют фатальные недостатки. Кроме того, в интернете можно найти людей, изготавливающих свои собственные системы и продающих их. Они не всегда безопасны. Некоторые используют для подачи воздуха шланг низкого качества, а другие не защищают от угарного газа, поступающего в воздухозаборники.
Австралийская система аккредитации дайверов (ADAS) является правительственной организацией, которая управляет коммерческим дайвингом в этой стране. Вот что они говорят по теме:
«Некоторые дайверы могут использовать хука-систему, примитивный аппарат для подачи воздуха с поверхности. Хука-дайвинг обширно представлен в статистике смертности при дайвинге, как на любительском, так и на профессиональном уровне, причем основной причиной является отравление угарным газом в результате всасывания выхлопных газов в воздухозаборники компрессора, оставленного на поверхности без присмотра».
Погружение с аквалангом дает больше свободы под водой, так как вы не привязаны к поплавку. Но для некоторых дайверов это ограничение не является проблемой, поэтому хука-система может стать их выбором. Если вы решите попробовать данную систему, просто помните, что перемещение расположения воздуха не отменяет риск. Некоторые дилеры хука-систем рекомендуют тем, кто использует конфигурации, позволяющие погружаться глубоко, использовать подводный компьютер и ремень с малым запасным баллоном с дыхательной смесью.
Источник