Гидроксид бериллия реагирует с водой

Содержание
  1. Оксид бериллия: способы получения и химические свойства
  2. Способ получения
  3. Химические свойства
  4. Гидроксид бериллия
  5. Химические свойства
  6. Полезное
  7. Смотреть что такое «Гидроксид бериллия» в других словарях:
  8. Щелочноземельные металлы и их соединения
  9. Элементы II группы главной подгруппы
  10. Положение в периодической системе химических элементов
  11. Электронное строение и закономерности изменения свойств
  12. Физические свойства
  13. Нахождение в природе
  14. Способы получения
  15. Качественные реакции
  16. Химические свойства
  17. Оксиды щелочноземельных металлов
  18. Способы получения
  19. Химические свойства
  20. Гидроксиды щелочноземельных металлов
  21. Способы получения
  22. Химические свойства
  23. Соли щелочноземельных металлов
  24. Нитраты щелочноземельных металлов
  25. Карбонаты щелочноземельных металлов
  26. Жесткость воды
  27. Постоянная и временная жесткость
  28. Способы устранения жесткости

Оксид бериллия: способы получения и химические свойства

Оксид бериллия BeO — бинарное неорганическое вещество . Белый, тугоплавкий, термически устойчивый, летучий в токе O2 и водяного пара. Проявляет амфотерные свойства.

Относительная молекулярная масса Mr = 25,01; относительная плотность для тв. и ж. состояния d = 3,015; tпл ≈ 2580º C; tкип = 4260º C.

Способ получения

1. Оксид бериллия получается при разложении карбоната бериллия при температуре выше 180º C. В результате разложения образуется оксид бериллия и углекислый газ:

2. В результате разложения нитрата бериллия при температуре выше 1000º С образуется оксид бериллия, оксид азота (IV) и кислород:

3. Гидроксид бериллия разлагается при 200 — 800º С с образованием оксида бериллия и воды:

4. Оксид бериллия можно получить путем разложения сульфата бериллия при температуре 547–600º C, образуется оксид бериллия и оксид серы (VI):

Химические свойства

1. Оксид бериллия реагирует с простыми веществами :

1.1. В результате реакции между оксидом бериллия и фтором при температуре выше 400º С образуется фторид бериллия и кислород:

1.2. Оксид бериллия реагирует с углеродом и образует карбид углерода и угарный газ:

2BeО + 3C = Be2C + 2CO

1.3. Магний реагирует с оксидом бериллия при 700 — 800º С. На выходе образуется оксид магния и бериллий:

BeO + Mg = MgO + Be

2. Оксид бериллия взаимодействует со сложными веществами:

2.2. Оксид бериллия взаимодействует с кислотами . При этом образуются соль и вода.

2.2.1. О ксид бериллия с концентрированной соляной кислотой образует хлорид бериллия и воду:

BeO + 2HCl = BeCl2 + H2O

2.2.2. В результате реакции между оксидом бериллия и концентрированной серной кислотой образуется сульфат бериллия и вода:

2.2.3. Если смешать горячую плавиковую кислоту с оксидом бериллия при 220 º С на выходе образуется фторид бериллия и вода

BeO + 2HF = BeF2 + H2O

2.2.4. Оксид бериллия вступает в реакцию с концентрированной плавиковой кислотой образуя тетрафторобериллат водорода и воду:

2.3. При взаимодействии бериллия с оксидами образуются соли:

2.3.1. Реагируя с оксидом кремния при температуре 1500 — 1600º С оксид бериллия образует силикат бериллия:

BeO + SiO2 = BeSiO3

2.3.2. Оксид бериллия реагирует с оксидом алюминия и образует алюминат бериллия:

2.3.3. В результате взаимодействия оксида бериллия и оксида натрия при 500º С образуется бериллат натрия:

2.4. Оксид бериллия вступает в реакции с основаниями :

Оксид бериллия взаимодействует с гидроксидом натрия при 250 — 300º С в расплаве . При это образуется бериллат натрия и вода:

Оксид бериллия взаимодействует с гидроксидом натрия в растворе . При это образуется комплексная соль и вода:

BeO + 2NaOH + H2O = Na2[Be(OH)4]

2.5. Оксид бериллия реагирует с солями:

Оксид бериллия взаимодействует с карбонатами при сплавлении и образует бериллат и воду:

Источник

Гидроксид бериллия

Гидроксид бериллия
Общие
Систематическое наименование Гидроксид бериллия
Химическая формула Be(OH)2
Эмпирическая формула Be(OH)2
Физические свойства
Состояние (ст. усл.) твёрдое
Отн. молек. масса 43,02694 а. е. м.
Молярная масса 43,02694 г/моль
Плотность 1,92 г/см³
Термические свойства
Энтальпия образования (ст. усл.) -20,98 кДж/моль
Классификация
Рег. номер CAS 13327-32-7
RTECS DS3150000
Безопасность
ЛД50 4 (внутривенно, крысы) мг/кг

Гидрокси́д бери́ллия — амфотерный гидроксид, имеющий химическую формулу Be(OH)2. При стандартных условиях представляет собой гелеобразное белое вещество, практически нерастворимое в воде. Вместе с тем, он хорошо растворяется в разбавленных минеральных кислотах. Гидроксид бериллия получают в виде геля при обработке солей бериллия гидроксидами щелочных металлов или гидролизом нитрида или фосфида бериллия.

Химические свойства

  • Взаимодействие с щелочами с образованием соли:

  • Разложение на оксид бериллия и воду при нагревании до 400 °C:

Для улучшения этой статьи желательно ? :
  • Добавить иллюстрации.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое «Гидроксид бериллия» в других словарях:

Гидроксид калия — Гидроксид калия … Википедия

Гидроксид лития — Гидроксид лития … Википедия

Гидроксид алюминия — Гидроксид алюминия, вещество с формулой (а также … Википедия

Гидроксид железа(II) — У этого термина существуют и другие значения, см. Гидроксиды железа. Гидроксид железа(II) … Википедия

бериллия гидроксид — berilio hidroksidas statusas T sritis chemija formulė Be(OH)₂ atitikmenys: angl. beryllium hydroxide rus. бериллия гидроксид; бериллия гидроокись … Chemijos terminų aiškinamasis žodynas

бериллия гидроокись — berilio hidroksidas statusas T sritis chemija formulė Be(OH)₂ atitikmenys: angl. beryllium hydroxide rus. бериллия гидроксид; бериллия гидроокись … Chemijos terminų aiškinamasis žodynas

Гидрид бериллия — Общие Систематическое наименование Гидрид бериллия Химическая формула BeН2 Эмпирическая формула BeН2 Физические свойства … Википедия

Фторид бериллия — Общие Систематическое наименование Фторид бериллия Сокращения Бесцветные кристаллы Традиционные названия Фтористый бериллий Химическая формула BeF2 Физи … Википедия

Оксид бериллия — Общие Систематическое наименование Оксид бериллия Традиционные названия Бромеллит Химическая формула BeO Эмпирическая формула BeO Физические свойства … Википедия

Хлорид бериллия — Общие Систематическое наименование Хлорид бериллия Химическая формула BeСl2 Эмпирическая формула BeСl2 Физические свойства Состояние ( … Википедия

Источник

Щелочноземельные металлы и их соединения

Элементы II группы главной подгруппы

Элементы II группы главной подгруппы

Положение в периодической системе химических элементов

Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.

Электронное строение и закономерности изменения свойств

Электронная конфигурация внешнего энергетического уровня щелочноземельных металлов: ns 2 , на внешнем энергетическом уровне в основном состоянии находится 2 s-электрона. Следовательно, типичная степень окисления щелочноземельных металлов в соединениях +2.

Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.

В ряду BeMgCaSrBaRa, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрицательность .

Физические свойства

Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.

Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.

Кристаллическая решетка щелочноземельных металлов в твёрдом состоянии — металлическая. Следовательно, они обладают высокой тепло- и электропроводимостью. Кипят и плавятся при высоких температурах.

Нахождение в природе

Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:

ДоломитCaCO3 · MgCO3 — карбонат кальция-магния.

Магнезит MgCO3 карбонат магния.

Кальцит CaCO3 карбонат кальция.

Гипс CaSO4 · 2H2O – дигидрат сульфата кальция.

Барит BaSO4 — сульфат бария.

Витерит BaCO3 – карбонат бария.

Способы получения

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

или восстановлением прокаленного доломита в электропечах при 1200–1300°С:

2(CaO · MgO) + Si → 2Mg + Ca2SiO4

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:

4BaO+ 2Al → 3Ba + Ba(AlO2)2

Качественные реакции

Качественная реакция на щелочноземельные металлы — окрашивание пламени солями щелочноземельных металлов .

Цвет пламени:
Caкирпично-красный
Srкарминово-красный (алый)
Baяблочно-зеленый

Качественная реакция на ионы магния : взаим одействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:

Mg 2+ + 2OH — → Mg(OH)2

Качественная реакция на ионы кальция, стронция, бария : взаим одействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает белый осадок карбоната кальция, стронция или бария :

Ca 2+ + CO3 2- → CaCO3

Ba 2+ + CO3 2- → BaCO3

Качественная реакция на ионы стронция и бария : взаим одействие с карбонатами. При взаимодействии солей стронция и бария с сульфатами выпадает белый осадок сульфата бария и сульфата стронция :

Ba 2+ + SO4 2- → BaSO4

Sr 2+ + SO4 2- → SrSO4

Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.

Например , при взаимодействии хлорида кальция с фосфатом натрия образуется белый осадок фосфата кальция:

Химические свойства

1. Щелочноземельные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.

Например , бериллий взаимодействует с хлором с образованием хлорида бериллия:

1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.

Например , кальций взаимодействует с серой при нагревании:

Ca + S → CaS

Кальций взаимодействует с фосфором с образованием фосфидов:

1.3. Щелочноземельные металлы реагируют с водородом при нагревании. При этом образуются бинарные соединения — гидриды. Бериллий с водородом не взаимодействует , магний реагирует лишь при повышенном давлении.

1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:

Остальные щелочноземельные металлы реагируют с азотом при нагревании.

1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.

Например , кальций взаимодействует с углеродом с образованием карбида кальция:

Ca + 2C → CaC2

Бериллий реагирует с углеродом при нагревании с образованием карбида — метанида:

2Be + C → Be2C

1.6. Бериллий сгорает на воздухе при температуре около 900°С:

2Be + O2 → 2BeO

Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:

2Mg + O2 → 2MgO

Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.

Видеоопыт : горение кальция на воздухе можно посмотреть здесь.

2. Щелочноземельные металлы взаимодействуют со сложными веществами:

2.1. Щелочноземельные металлы реагируют с водой . Взаимодействие с водой приводит к образованию щелочи и водорода. Бериллий с водой не реагирует. Магний реагирует с водой при кипячении. Кальций, стронций и барий реагируют с водой при комнатной температуре.

Например , кальций реагирует с водой с образованием гидроксида кальция и водорода:

2 Ca 0 + 2 H2 + O = 2 Ca + ( OH)2 + H2 0

2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотамисоляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например , магний реагирует с соляной кислотой :

2Mg + 2HCl → MgCl2 + H2

2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.

Например , при взаимодействии кальция с концентрированной серной кислотой образуется сульфат кальция, сера и вода:

2.4. Щелочноземельные металлы реагируют с азотной кислотой . При взаимодействии кальция и магния с концентрированной или разбавленной азотной кислотой образуется оксид азота (I):

При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.

Например , при взаимодействии кальция с оксидом кремния (IV) образуются кремний и оксид кальция:

2Ca + SiO2 → 2CaO + Si

Магний горит в атмосфере углекислого газа . При этом образуется сажа и оксид магния:

2Mg + CO2 → 2MgO + C

2.6. В расплаве щелочноземельные металлы могут вытеснять менее активные металлы из солей и оксидов . Обратите внимание! В растворе щелочноземельные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , кальций вытесняет медь из расплава хлорида меди (II):

Ca + CuCl2 → CaCl2 + Cu

Оксиды щелочноземельных металлов

Способы получения

1. О ксиды щелочноземельных металлов можно получить из простых веществ — окислением металлов кислородом :

2Ca + O2 → 2CaO

2. Оксиды щелочноземельных металлов можно получить термическим разложением некоторых кислородсодержащих солей — карбонатов , нитратов .

Например , нитрат кальция разлагается на оксид кальция, оксид азота (IV) и кислород:

3. Оксиды магния и бериллия можно получить термическим разложением гидроксидов :

Химические свойства

Оксиды кальция, стронция, бария и магния — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой. Оксид бериллия — амфотерный .

1. Оксиды кальция, стронция, бария и магния взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид магния взаимодействует с углекислым газом с образованием карбоната магния:

2. Оксиды щелочноземельных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид кальция взаимодействует с соляной кислотой с образованием хлорида кальция и воды:

CaO + 2HCl → CaCl2 + H2O

3. Оксиды кальция, стронция и бария активно взаимодействуют с водой с образованием щелочей.

Например , оксид кальция взаимодействует с водой с образованием гидроксида кальция:

CaO + H2O → 2Ca(OH)2

Оксид магния реагирует с водой при нагревании:

MgO + H2O → Mg(OH)2

Оксид бериллия не взаимодействует с водой.

4. Оксид бериллия взаимодействует с щелочами и основными оксидами.

При взаимодействии оксида бериллия с щелочами в расплаве или с основными оксидами образуются соли-бериллаты.

Например , оксид натрия реагирует с оксидом бериллия с образованием бериллата натрия:

Например , гидроксид натрия реагирует с оксидом бериллия в расплаве с образованием бериллата натрия:

При взаимодействии оксида бериллия с щелочами в растворе образуются комплексные соли.

Например , оксид бериллия реагирует с гидроксидом калия с растворе с образованием тетрагидроксобериллата калия:

Гидроксиды щелочноземельных металлов

Способы получения

1. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих оксидов с водой .

Например , оксид кальция (негашеная известь) при взаимодействии с водой образует гидроксид кальция (гашеная известь):

Оксид магния взаимодействует с водой только при нагревании:

2. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих металлов с водой.

Например , кальций реагирует с водой с образованием гидроксида кальция и водорода:

Магний взаимодействует с водой только при кипячении:

3. Гидроксиды кальция и магния можно получить при взаимодействии солей кальция и магния с щелочами .

Например , нитрат кальция с гидроксидом калия образует нитрат калия и гидроксид кальция:

Химические свойства

1. Гидроксиды кальция, стронция и бария реагируют с всеми кислотами (и сильными, и слабыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Гидроксид магния взаимодействует только с сильными кислотами.

Например , гидроксид кальция с соляной кислотой реагирует с образова-нием хлорида кальция:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид бария с углекислым газом реагирует с образова-нием карбонатов или гидрокарбонатов:

3. Гидроксиды кальция, стронция и бария реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид бария с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. Гидроксиды кальция, стронция и бария взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид кальция реагирует с гидрокарбонатом кальция с образованием карбоната кальция:

5. Гидроксиды кальция, стронция и бария взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода). Взаимодействие щелочей с неметаллами подробно рассмотрено в статье про щелочные металлы.

6. Гидроксиды кальция, стронция и бария взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

7. Гидроксиды кальция, стронция и бария вступают в обменные реакции с растворимыми солями. Как правило, с этими гидроксидами реагируют растворимые соли тяжелых металлов (в ряду активности расположены правее алюминия), а также растворимые карбонаты, сульфиты, силикаты, и, для гидроксидов стронция и бария — растворимые сульфаты.

Например , хлорид железа (II) реагирует с гидроксидом бария с образованием хлорида бария и осадка гидроксида железа (II):

Также с гидроксидами кальция, стронция и бария взаимодействуют соли аммония.

Например , при взаимодействии бромида аммония и гидроксида кальция образуются бромид кальция, аммиак и вода:

8. Гидроксид кальция разлагается при нагревании до 580 о С, гидроксиды магния и бериллия разлагаются при нагревании:

9. Гидроксиды кальция, стронция и бария проявляют свойства сильных оснований . В воде практически полностью диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

Ba(OH)2 ↔ Ba 2+ + 2OH —

Гидроксид магния — нерастворимое основание. Гидроксид бериллия проявляет амфотерные свойства.

10. Гидроксид и бериллия взаимодействует с щелочами . В расплаве образуются соли бериллаты, а в растворе щелочейкомплексные соли.

Например , гидроксид бериллия реагирует с расплавом гидроксида натрия:

При взаимодействии гидроксида бериллия с избытком раствора щелочи образуется комплексная соль:

Соли щелочноземельных металлов

Нитраты щелочноземельных металлов

Нитраты кальция, стронция и бария при нагревании разлагаются на нитриты и кислород. Исключениенитрат магния. Он разлагается на оксид магния, оксид азота (IV) и кислород.

Например , нитрат кальция разлагается при нагревании на нитрит кальция и молекулярный кислород:

Карбонаты щелочноземельных металлов

1. Карбонаты щелочноземельных металлов при нагревании разлагаются на оксид и углекислый газ.

Например , карбонат кальция разлагается при температуре 1200 о С на оксид кальция и углекислый газ:

2. Карбонаты щелочноземельных металлов под действием воды и углекислого газа превращаются в растворимые в воде гидрокарбонаты.

Например , карбонат кальция взаимодействует с углекислым газом и водой с образованием гидрокарбоната кальция:

3. Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого газа и воды.

Более сильные кислоты вытесняют менее сильные из солей.

Например , карбонат магния взаимодействует с соляной кислотой:

4. Менее летучие оксиды вытесняют углекислый газ из карбонатов при сплавлении. К менее летучим, чем углекислый газ, оксидам относятся твердые оксиды — оксид кремния (IV), оксиды амфотерных металлов.

Менее летучие оксиды вытесняют более летучие оксиды из солей при сплавлении.

Например , карбонат кальция взаимодействует с оксидом алюминия при сплавлении:

Жесткость воды

Постоянная и временная жесткость

Жесткость воды — это характеристика воды, обусловленная содержанием в ней растворенных солей щелочноземельных металлов, в основном кальция и магния (солей жесткости).

Временная (карбонатная) жесткость обусловлена присутствием гидрокарбонатов кальция Ca(HCO3)2 и магния Mg(HCO3)2 в воде.

Постоянная (некарбонатная) жесткость обусловлена присутствием солей, не выделяющихся при кипячении из раствора: хлоридов (CaCl2) и сульфатов (MgSO4) кальция и магния.

Способы устранения жесткости

Существуют химические и физические способы устранения жесткости. Химические способы устранения временной жесткости:

1. Кипячение. При кипячении гидрокарбонаты кальция и магния распадаются на нерастворимые карбонаты, углекислый газ и воду:

2. Добавление извести (гидроксида кальция). При добавлении щелочи растворимые гидрокарбонаты переходят в нерастворимые карбонаты:

Химические способы устранения постоянной жесткостиреакции ионного обмена, которые позволяют осадить ионы кальция и магния из раствора:

1. Добавление соды (карбоната натрия). Карбонат натрия связывает ионы кальция и магния в нерастворимые карбонаты:

CaCl2 + Na2CO3 → CaCO3↓+ 2NaCl

2. Добавление фосфатов. Фосфаты также связывают ионы кальция и магния:

Источник

Читайте также:  Парфюмерная вода монблан женская
Оцените статью