Химически подготовленная вода это

ВОДОПОДГОТОВКА

комплекс технол. процессов обработки и очистки воды для приведения ее кач-ва в соответствие с требованиями потребителей. Осн. процессы рассмотрены ниже. Кроме того, при В. из воды могут удаляться Mn, F, синтетич. моющие и красящие в-ва, пестициды и др. В. проводят на спец. станциях, производительность к-рых может составлять от неск. м 3 /сут до млн. м 3 /сут.

Осветление. Вода поверхностных (открытых) источников, как правило, содержит крупнодисперсные и коллоидные минер. и орг. примеси, обусловливающие ее цветность. Для их удаления воду обрабатывают коагулянтами [A12(SO4)3, FeSO4, FeCl3] и флокулянтами (полиакриламидом, активной H2SiO3 и др.). Образовавшуюся хлопьевидную массу, состоящую в осн. из гидроксидов А1 и Fe и примесей, выделяют из воды в отстойниках или спец. осветлителях (осадок в них поддерживается во взвешенном состоянии потоком поступающей снизу воды), напорных или открытых фильтрах и контактных осветлителях с загрузкой из зернистых материалов (кварцевый песок, дробленый антрацит, керамзит, шунгизит и др.), а также во флотаторах, гидроциклонах, намывных фильтрах. Для частичного удаления крупнодисперсных примесей и фитопланктона, образующегося при цветении водоемов, применяют сетчатые микрофильтры, плоские и барабанные сетки. См. также Осаждение.

Обеззараживание. Наличие в воде болезнетворных микроорганизмов и вирусов делает ее непригодной для хозяйственно-питьевых нужд, а присутствие в воде нек-рых видов микроорганизмов (напр., нитчатых, зооглейных, суль-фатвосстанавливающих бактерий, железобактерий) вызывает биол. обрастание, а иногда и разрушение трубопроводов и оборудования.

Наиб. распространено хлорирование воды жидким или газообразным С12, гипохлоритами — NaClO, Са(СlO)2 и СlO2. Хлор взаимод. с водой с образованием НС1О и НС1; при рН > 4 свободный С12 практически отсутствует, при рН > 5,6 НС1О диссоциирует на Н + и СlO — . Бактерицидность недиссоциированной НС1О в 70-80 раз больше, чем у СlO — . При наличии в воде NH3, аммониевых солей или орг. в-в, содержащих группы NH2, C12, HC1O и гипохлориты реагируют с ними, образуя неорг. и орг. моно- и дихлорамины. Монохлорамины в 3-5 раз менее бактерицидны, чем дихлорамины, к-рые в свою очередь в 20-25 раз менее эффективны свободного С12. Бактерицидность хлораминов, образованных С12, НОС1, С1О — , NH3 или солями аммония, в 8-10 раз выше, чем бактерицидность хлорпроизводных орг. аминов или иминов. Концентрацию свободного и связанного (в хлораминах) С12, необходимую для обеспечения заданного обеззараживающего эффекта, определяют по результатам пробного хлорирования. Для обеззараживания воды применяют также озон и УФ-облучение.

Читайте также:  Заброшенный бассейн с водой

Стабилизация. Стабильной считается вода, к-рая не выделяет и не растворяет отложения СаСО 3. Показателем стабильности служит индекс насыщения I воды карбонатом Са, к-рый рассчитывают по данным о рН и т-ре обрабатываемой воды, а также концентрации катионов Са 2+ , общих щелочности и солесодержании. Исходя из этих данных, находят pHs, соответствующий насыщению воды карбонатом. На основе pHs и измеренного значения рН вычисляют I = рН Ч рН 5. Вода считается стабильной, если I = 0; при I 0 может выделяться СаСО 3 с образованием противокоррозионной пленки на стенках трубопроводов и оборудования. Это связано с наличием в воде СО 2: при его избытке происходит коррозия, при недостатке — пересыщение воды СаСО 3, что и приводит к образованию накипи.

Для связывания СО 2 в Са(НСО 3)2 или NaHCO3 воду обрабатывают Са(ОН)2, Na2CO3 или др. щелочными реагентами. Многие прир. и производств. воды, идущие на охлаждение, пересыщены СаСО 3, а также Mg(OH)2. При использовании в кач-ве хладагента вода нагревается, что вызывает разложение гидрокарбонатов и выпадение СаСО 3; помимо этого, осаждаются Mg(OH)2 и нек-рые соли. Для устранения отложений воду подкисляют H2SO4 или НС1, обрабатывают СО 2 (обычно топочными газами — т. наз. рекарбонизация), фосфатируют (напр., полифосфатами) и стабилизируют др. реагентами.

Умягчение заключается в удалении из воды катионов Са 2+ и Mg 2+ (см. Жесткость воды).

Реагентное умягчение основано на введении в воду в-в, обогащающих ее анионами СО 3 2- и ОН — , в результате чего образуются труднорастворимые СаСО 3 и Mg(OH)2, выделяемые из воды осаждением и фильтрованием. При обработке воды известью [гашеной Са(ОН)2 или негашеной СаО] происходит декарбонизация — устранение карбонатной жесткости; снижается также щелочность воды. Известь связывает растворенный в воде СО 2 с образованием гидрокарбонатных ионов НСО 2, к-рые, взаимод. с известью, превращ. в карбонаты, выпадающие в осадок. Для устранения магниевой карбонатной жесткости кол-во извести должно обеспечивать получение малорастворимой Mg(OH)2 при одноврем. эквивалентном выделении в осадок СаСО 3. Предел умягчения воды известью определяется р-римостью СаСО 3 и Mg(OH)2.

Читайте также:  Что делать если выпил мертвую воду

Воду обрабатывают известью и содой в тех случаях, когда Са и Mg присутствуют в воде не только в виде гидрокарбонатов, но и в виде хлоридов и сульфатов, т. е. для устранения как карбонатной, так и некарбонатной жесткости. При этом образуются осадки СаСО 3 и Mg(OH)2, в р-р переходит Na + (в виде Na2SO4 и NaCl) в кол-ве, эквивалентном кол-ву Na2CO3. Вода, умягченная известью и содой без подогрева, имеет остаточную жесткость порядка 0,5-1,0 ммоль/л. При нагр. воды до 35-40

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Источник

Химическая водоподготовка

Химическая водоподготовка (ХВП) – это подготовка воды для теплоэнергетических предприятий, ТЭЦ, ГРЭС, АЭС. Основная задача химводоподготовки – обеспечение котельного оборудования умягченной и/ или обессоленной водой, а также не содержащей агрессивных газов, таких как кислород, свободная углекислота.

Требования к качеству химочищенной воды зависит от типа котлов, системы теплоснабжения, рабочего давления и др.параметров. Необходимость доведения параметров воды до определенных требований связана с предотвращением коррозии теплоэнергетического оборудования и накипеобразования на теплопередающих поверхностях, отложений в проточной части турбин, шлама в оборудовании и трубопроводах электростанций и тепловых сетей. Процесс накипеобразования происходит вследствие уменьшения растворимости солей (в основном карбонатов кальция и магния) при увеличении температуры воды. Т.к. уменьшается растворимость солей в воде, то происходит их выделение из воды и выпадение в осадок. В осадок выпадают соли карбонатной жесткости (CaCO3, MgCO3). Помимо карбонатной жесткости в воде имеются также соли некарбонатной жесткости (CaCl2, CaSO4, MgCl2, MgSO4 и др.), которые не выпадают в осадок. Отложения на поверхностях теплообменного оборудования являются причиной снижения теплоотдачи, а, следовательно, увеличению мощности агрегатов, что в результате является причиной уменьшения их срока службы.

Основные задачи химической водоподготовки

Основными задачами химводоподготовки является обеспечение качества подготовленной воды по ряду показателей:

  • прозрачность;
  • рН;
  • содержание катионов кальция и магния;
  • содержание железа;
  • содержание растворенного кислорода;
  • содержание свободной углекислоты;
  • содержание нефтепродуктов.

При заборе воды из природных источников чаще всего перед умягчением требуется предварительное удаление из воды взвешенных веществ, органики, железа, марганца и др.веществ, т.к. ионообменные смолы будут забиваться другими загрязняющими веществами. В случае использования в качестве источника водоснабжения водопроводной воды чаще всего предварительная очистка не требуется.

Технологии химводоподготовки

В настоящее время для подготовки химочищенной воды используются две технологии:

Ионный обмен заключается в пропускании воды через фильтр, загруженный ионообменной смолой в H+ или Na+ форме. Ионообменные смолы (иониты) – это своего рода специфические сорбенты заряженных частиц (ионов). В процессе работы ионитов происходит поглощение одного иона с одновременным выходом в раствор другого иона, являющегося составной частью ионита.

Таким образом, ионы, которые необходимо извлечь из воды (кальций, магний и др.) сорбируются на матрице ионообменной смолы.

Обычно используется ионообменная смола в Na+ форме, т.к. при применении смол в Н-форме происходит подкисление подготовленной воды за счет ее обогащения ионами водорода. В процессе пропускания воды через смолу происходит обмен эквивалентного количества катионов кальция и магния, содержащихся в исходной воде с катионами натрия, имеющихся на матрице ионообменной смолы. В результате такого обмена происходит изменение состава обрабатываемой воды и химического состава ионообменной смолы. Основной характеристикой ионообменной смолы является ионообменная емкость, по истощении которой необходимо проводить регенерацию смол с целью возобновления ее ионообменной способности. Регенерация смол в Na-форме проводится водным раствором хлорида натрия, в результате чего происходит обратный процесс замещения ионов кальция и магния на ионы натрия из солевого раствора. Время между регенерациями, т.е. фильтроцикл зависит от ионообменной емкости смолы, а также от количества смолы и объема пропускаемой через нее воды.

Для достижения жесткости химочищенной воды менее 0,1 мг-экв/л обычно используют схемы двухступенчатого умягчения. Необходимость второй ступени определяется показателем жесткости исходной воды.

Для организации непрерывного процесса получения химочищенной воды в обязательном порядке изготавливаемые нами станции химводоподготовки оснащаются резервными фильтрами. В период выхода одного из фильтра на регенерацию резервный фильтр включается в работу, тем самым обеспечивая требуемый расход воды в течение 24 часов в сутки.

Кроме умягчения при совместном использовании катионитов и анионитов можно обеспечить и обессоливание воды. Однако, метод ионного обмена имеет свои недостатки:

  1. Большой расход реагентов на регенерацию.
  2. Такие схемы громоздские, поэтому для размещения оборудования, а также для организации большого складского реагентного хозяйства требуются большие площади, а, следовательно, высокие капитальные затраты.

В настоящее время для обессоливания воды и в частности для умягчения все большее применение находят установки, работа которых основана на технологии обратного осмоса. Основным преимуществом данного метода является отсутствие необходимости в огромном реагентном хозяйстве, а также одновременное удалении катионов жесткости, карбонатов, сульфатов, хлоридов, т.е. обессоливания воды. Такие установки намного компактнее, что сокращает капитальные затраты на возведение зданий. Более подробная информация об установках обратного осмоса.

Также химическая водоподготовка включает в себя стадию коррекционной обработки воды, заключающуюся в корректировке значения рН и связывании растворенного кислорода. Для данных целей применяются специальные химические реагенты. Станции дозирования включают в себя насосы-дозаторы, растворные емкости, мешалки, датчики уровня. Введение реагентов осуществляется автоматически по расходу и по датчику рН. В случаях, когда реагентная обработка не применима, дегазацию осуществляют с помощью деаэрационных установок.

Источник

Химическая очистка воды

Качество воды из природных источников определяют по наличию в ней веществ органического и неорганического происхождения, микроорганизмов, и характеризуют различными физическими, химическими, бактериологическими и биологическими показателями. Ощутимое превышение даже одного показателя может стать причиной недомогания и даже серьезного расстройства здоровья человека. Для водоочистки применяют различные методы или их комбинацию. Выбор способа зависит от состава водного раствора, целей водоподготовки и конечного назначения воды. Химическая очистка воды позволяет удалить растворенные химические соединения из пресной воды путем образования труднорастворимых комплексов с электролитами.

Какие методы очистки воды существуют

Несоответствие качества воды источника требованиям потребителя определяет выбор методов обработки воды. Загрязняющие вещества присутствуют в воде в разных формах, принцип удаления каждой из которых имеет особенности.

Методы водоподготовки делят на основные четыре группы.

  1. Химический способ очистки воды введением реагентов.
  2. Физические фильтрация, отстаивание, процеживание или обработка ультрафиолетом.
  3. Физико-химическое комплексное устранение загрязнителей.
  4. Использование биоорганизмов для нейтрализации примесей.

В основу всех химических методов очистки воды положены процессы перевода растворенных и взвешенных примесей в нерастворимую форму либо их разрушение до безопасных составляющих с помощью вводимых веществ. Выпадающий в ходе химической реакции осадок загрязнителей удаляют фильтрованием или другим физическим способом.

Очистка воды физическими методами проводится на предварительных стадиях водоподготовки и предполагает освобождение водного раствора от крупных взвешенных включений, которые могут нарушить правильную работу фильтров тонкой очистки. Применение физических способов подготовки для более глубокой водоочистки возможно, но нецелесообразно ввиду малой производительности процессов.

Физико-химические методы являются самой большой группой способов водоочистки. Они совмещают процессы химической очистки воды с последующим удалением загрязнителей применением физических явлений. Множество технологий и комплексный подход позволяет удалять самые разные примеси в любом агрегатном состоянии, растворенные газы, коллоидные частицы органики, ионы тяжелых металлов.

Использование для очистки воды отдельных микроорганизмов — перспективное направление избавления водных растворов от примесей разной природы. Главной особенностью биологического варианта очистки можно указать возможность подбора бактерий, микроорганизмов и простейших под имеющийся химический состав водного раствора. Среда, в которой происходит эффективная очистка воды биоматериалом, носит название активный ил. Процессы биоочистки могут протекать аэробно и анаэробно. Все зависит от особенностей жизнедеятельности микроорганизмов.

В чем заключается химическая очистка воды

Химическая водоочистка основана на химических реакциях реагентов с загрязняющими веществами в водном растворе и их обезвреживании путем перевода в неопасные формы или связывании в нерастворимые комплексы. Химические процессы при очистке воды идут с одинаковой скоростью в любом объеме жидкости, потому этот метод считается эффективным и производительным. Химическая очистка воды на предприятиях лежит в основе обеспечения оборотного водоснабжения и обезвреживания промышленных вод.

Несмотря на великое разнообразие загрязняющих элементов, их соединений и формы присутствия в водном растворе очистка воды от химических загрязнений проводится на основании трех видов химических реакций с удаляемыми элементами:

  • Нейтрализация кислотной или щелочной реакции водного раствора.
  • Окисление загрязнителей и патогенных микроорганизмов.
  • Восстановление ионов металлов и токсичных веществ.

Нейтрализация, как метод очистки воды

Нейтрализация основана на оптимизации кислотно-щелочного баланса за счет реакции нейтрализации между кислой и щелочной средой с образованием солей. Этот метод чаще всего находит применение при химической очистке отработанной воды на производстве, так как вода из скважины или природных источников обычно имеет нейтральную среду и корректировки рН не требует. После очистки воды химическими реакциями нейтрализации она становится пригодной для повторного запуска в технологическую схему и безопасной для природы.

Технологии метода применяют смешение сточных промышленных вод разных сред для взаимной нейтрализации либо введение реагентов для создания кислотной или щелочной реакции. В качестве химических агентов при нейтрализации кислотности среды применяют гидроокиси щелочных металлов K и Na, гидроксид аммония NH4OH, карбонат натрия или соду Na2CO3, известковое молоко или гидроксид кальция Ca(OH)2. Выбор реагента зависит от концентрации и кислотного состава отработанной воды: преобладания сильных или слабых кислот. Химические компоненты для очистки щелочных стоков представляют собой растворы кислот или газы с кислой реакцией NO2, SO2, CO2. Технология пропускания отработанных кислых газов через промышленные стоки выполняет сразу две функции: нейтрализацию воды и очистку газов.

Для реализации технологических схем водоочистки методом нейтрализации применяют специальное оборудование для химической водоподготовки: накопители, осветители, отстойники. Выбор схемы химической очистки воды нейтрализацией зависит от климатических условий, природной рН среды водоемов, длительности хранения отработанных вод.

Способ водоподготовки — окисление

Окисление занимает главенствующую позицию среди технологий химической очистки воды. Под действием сильных окислителей — хлора и его соединений, перманганата и бихромата калия, озона, перекиси водорода — меняется форма целевых веществ на неопасную, токсичные формы переходят в безвредные, погибает патогенная микрофлора. С помощью химической очистки воды окислением можно связать те соединения, которые проблематично извлечь любыми другими способами.

Обработка воды хлорсодержащими соединениями чаще всего встречается в технологических схемах химической водоподготовки на производстве и в потребительском водоснабжении. Бактерицидные свойства хлора гарантируют, что на качество воды не повлияет сложный транспортный путь доставки воды по трубопроводам от насосной станции до конечного потребителя. Хлорреагенты дешевы и всегда в наличии. Вместе с хлорирующими веществами часто вводят аммиак и аммонийные соли для предотвращения образования хлорфенольных соединений с неприятным запахом и привкусом.

Добавление перманганата калия способствует разрушению органических веществ, образующих хлорпроизводные с резким неприятным запахом. Однако химическая очистка питьевой воды хлором должна осуществлять под строгим контролем дозирования реагента, так как хлор ядовит и может образовывать токсичные соединения при взаимодействии с растворенными в воде веществами. Перед подачей такой воды потребителю ее дехлорируют SO2, гипосульфитом, сульфитом натрия или адсорбцией на активированном угле.

В последнее время на передовые позиции выходит озонирование, в несколько раз превышающее по эффективности химическую обработку воды хлорирующими веществами. Благодаря высокому окислительному потенциалу озон окисляет даже те вещества, которые обычно не окисляются другими реагентами. Длительность контакта озона с водой не превышает 10 — 15 минут, а дополнительные соединения при этом не образуются. Так как озон поступает в воду с большим количеством воздуха, одновременно происходит аэрирование воды. В результате очистки от химических загрязнений озонированием вода приобретает свежий привкус и запах, характерный для поверхностных или ключевых вод наилучшего качества. Взрывоопасность и сложность получения в необходимом количестве тормозят процесс повсеместного внедрения озона как химического реагента очистки воды. При озонировании необходимо строго соблюдать технику безопасности на очистных сооружениях во избежание негативных последствий.

Метод восстановления

На практике часто применяют комбинированные методы химической водоподготовки, сочетающие хлорирование воды на первичных стадиях очистки и обработку озоном при подаче потребителю.

Метод восстановления при химической очистке воды используют реже окисления, но он позволяет провести подготовительные процессы перевода окисленных форм токсичных хрома, ртути, мышьяка, переходных и тяжелых металлов никеля, свинца в молекулярное состояние для последующего отделения с помощью физико-химических методов флотации, коагуляции, отстаивания и связывания на фильтрах для химической очистки воды. Этот метод эффективен при высокой концентрации легко восстанавливаемых элементов в природном источнике или промышленной отработанной воде.

Универсален ли химический метод очистки воды

Химическая очистка воды не является универсальным и санитарно надежным методом водоподготовки. Устранение с помощью реагентов загрязнителей и выравнивание рН среды наиболее применимо в системах оборотного водоснабжения на промышленных производствах. Окислители не устраняют загрязнения, а переводят их в другие соединения, требующие применения физических или физико-химических методов для удаления осадков из водного раствора. Применяя химические реагенты для очистки воды нужно быть уверенным, что их действие не приведет к образованию новых нежелательных загрязнений, ухудшающих органолептические показатели воды. Только комплексный подход при выборе методов водоочистки, основанный на химическом анализе загрязнителей дает полноценную очистку воды от всех видов примесей и растворенных веществ.

Источник

Оцените статью