- Что произошло с водой на Марсе? Кажется, ученые нашли ответ
- Куда пропала марсианская вода?
- Тайны марсианской атмосферы
- Пылевые дьяволы
- Марсианский океан тайн: учёные рассказали, как с Красной планеты исчезла вода
- Планетологи подсчитали, что Марс терял слой воды глубиной около двух метров каждый миллиард лет. Вот только этих темпов недостаточно, чтобы объяснить нынешнее состояние Красной планеты.
Что произошло с водой на Марсе? Кажется, ученые нашли ответ
В 1971 году благодаря миссии «Маринер-9» появились первые свидетельства существовании воды на Красной планете. Кстати, именно тогда Дэвид Боуи спел свою знаменитую песню «Is there life on Mars?». Затем, в декабре того же года на Марс была запущена советская спускаемая автоматическая межпланетная станция (АМС) «Марс-3», в ходе которой было установлено множество факторов, в том числе измерено содержание водяного пара в атмосфере планеты. Сегодня, 49 лет спустя, ученые считают, что миллиарды лет назад Марс был намного теплее и содержал океаны жидкой воды. Но куда делась вся эта вода? Недавно, благодаря космическому аппарату NASA Mars Atmosphere and Volatile Evolution (MAVEN), ученые получили более глубокое понимание атмосферы Красной планеты и, похоже, нашли ответ на этот вопрос. Оказывается, к полному осушению этой планеты привели пылевые бури и особенности ее атмосферы.
В 2001 году пыльная буря охватила весь Марс.
Куда пропала марсианская вода?
В 2017 году исследователи из Оксфордского университета предположили, что большая часть воды заперта внутри марсианских скал, которые впитали жидкую воду, как гигантская губка. Используя метод компьютерного моделирования и данные, собранные о горных породах здесь, на Земле, международная группа ученых пришла к выводу о том, что базальтовые породы на Марсе могут содержать до 25% больше воды, чем эквивалентные породы на нашей собственной планете. Это может помочь объяснить, куда исчезла вода.
«Ученые долго думали над вопросом о том, куда пропала марсианская вода, но мы никогда не проверяли теорию поглощения воды в результате простых реакций горных пород», – слова ведущего автора исследования Джона Уэйда из Оксфордского университета приводит издание Sciencealert.
Вид древней сети речных долин на Марсе
Благодаря различиям в температуре, давлении и химическом составе самих горных пород, вода на Марсе могла быть поглощена скалистой поверхностью, в то время как Земля сохранила свои озера и океаны, пишут авторы работы, опубликованной в журнале Nature. Но скалистые и горные породы вряд ли могли поглотить всю марсианскую воду.
Интересный факт – сегодня, благодаря исследованиям международной команды ученых, мы знаем, что под поверхностью Марса есть система подземных озер. Авторы сразу нескольких научных работ полагают, что вода в этих озерах соленая, но в научном сообществе по-прежнему ведутся споры на этот счет. Ситуация должна проясниться в феврале 2021 года, когда в марсианскую атмосферу войдет китайский орбитальный аппарат «Тяньвэнь-1».
Тайны марсианской атмосферы
Чтобы понять, куда пропала марсианская вода, ученые посмотрели вверх — примерно на 150 километров над поверхностью Марса. Как пишет издание Inverse, изучение этой специфической части атмосферы планеты, а не ее поверхности, имело решающее значение для нового понимания учеными того, что произошло с марсианской водой.
Часть атмосферы, которой заинтересовались ученые, переходит в космос. Как пишут авторы работы, опубликованной в журнале Science, это не какой-то жесткий край, а скорее, плавный переход. Все планеты с атмосферой, включая Землю, имеют такое переходящее пространство, которое мы называем экзосферой – место, где свет от звезд расщепляет нейтральные молекулы на составные части, например, углекислый газ на углерод и кислород.
Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!
И именно в этом переходном пространстве команда обнаружила следы воды. «Это настоящий сюрприз и имеет значительные последствия для понимания того, куда пропала вода с планеты», – пишут авторы исследования. Пылевые дьяволы — согласно новым данным, пыльные бури, поднимающиеся с поверхности Марса, по-видимому, медленно высасывали воду планеты в течение миллионов лет, сметая молекулы воды в дикое путешествие в атмосферу.
Атмосфера Красной планеты – это газовая оболочка. Существенно отличается от земной атмосферы как по химическому составу, так и по физическим параметрам.
Подобное происходит и на нашей планете — испаренные молекулы воды движутся вверх, пока не конденсируются из газа обратно в жидкость, превращаясь в дождевые облака. Место, где этот процесс происходит, называется термопаузой.
Термопауза – верхний слой атмосферы планеты, расположенный над термосферой, характеризующийся переходом к постоянной температуре. Выше расположена экзосфера.
На Марсе термопауза работает не так эффективно, как следовало бы и не так эффективно, как термопауза Земли. В результате, когда вода движется в верхние слои атмосферы Марса, она вступает в реакцию с атмосферными молекулами и расщепляется на водород и кислород — водород может затем полностью покинуть марсианскую атмосферу, как предполагает исследование, — и в конечном итоге навсегда теряется в космосе.
Открытие ученых из Аризонского университета проливает свет на эволюцию Красной планеты от мира, возможно, похожего на Землю, к пустынной планете, которую мы знаем сегодня. Ученые полагают, что, хотя поверхность Марса пронизана древними озерами и реками, единственная оставшаяся вода может находиться в ловушке под землей.
Пылевые дьяволы
Американский искусственный спутник для исследования атмосферы Марса MAVEN может проводить исследования во время марсианских пылевых бурь. В то время как большинство других спутников совершают круговые орбиты, то есть они смотрят на одну и ту же часть Марса в одно и то же время суток снова и снова, Maven «постоянно пробует различные условия на Марсе, с точки зрения времени суток, долготы и широты», — пишут исследователи.
Пылевые бури на Красной планете – обычное дело
Пылевые бури на Марсе происходят регулярно и в разных регионах планеты, но в 2018 году планету настигла глобальная буря. Однако для команды ученых это событие оказалось удачным, так как предоставило «беспрецедентное представление о том, как вся планета реагирует на шторм». Но тот шторм оценили не все. Марсоход NASA Opportunity патрулировал поверхность Марса. Пыль, поднятая во время шторма оседала на солнечных панелях аппарата, блокируя солнечные лучи и лишая его энергии, что в конечном итоге положило конец историческому путешествию.
Источник
Марсианский океан тайн: учёные рассказали, как с Красной планеты исчезла вода
Планетологи подсчитали, что Марс терял слой воды глубиной около двух метров каждый миллиард лет. Вот только этих темпов недостаточно, чтобы объяснить нынешнее состояние Красной планеты.
Сколько воды на Марсе сейчас
Это кратер Королёв недалеко от Северного полюса Красной планеты. Диаметр 81 километр. Внутри, по подсчётам учёных, примерно два триллиона тонн льда, и это именно водяной лёд, а не замёрзший углекислый газ.
Южная полярная шапка Марса гораздо меньше северной — всего 400 километров в ширину. Всё дело в том, что ось планеты немного наклонена (на 25 градусов), а орбита несколько вытянутая. То есть за время облёта вокруг Солнца Марс то приближается к светилу на расстояние 207 миллионов километров (это называется перигелием), то удаляется до 249 миллионов километров (это афелий). Так вот, в перигелии планета «смотрит» на свою звезду южным полушарием. Значит, на юге лето всегда жарче, хотя и короче.
Южная полярная шапка Марса. Фото © NASA
— В 2004 году спектрометр OMEGA на Mars-Express обнаружил, что Южная полярная шапка двухслойная. То есть одновременно в спектрах Марса наблюдались полосы и водяного, и углекислого льда. И это было одно из первых прямых доказательств того, что под сухим льдом находится водяной, — рассказал в интервью Лайфу руководитель лаборатории экспериментальной спектроскопии Института космических исследований РАН Анна Фёдорова.
В 2012–2015 годах окрестности Южного полюса тщательно просканировал прибор на борту зонда Mars-Express — MARSIS. Он посылал на поверхность радиосигналы и фиксировал, как они отражаются. В 2018 году учёные сообщили, что в одном месте, примерно в 500 километрах от полюса, есть участок 20-километровой ширины, который отражает очень подозрительно — совсем не так, как лёд или грунт. Вывод исследователей: на глубине полутора километров прячется озеро. Вода в нём имеет температуру ниже нуля по Цельсию, но она настолько солёная, что не замерзает. Позже в Университете Аризоны предположили, что водоём может подогреваться изнутри за счёт остатков тепла от древней вулканической активности планеты. Этой активности уже миллионы лет как нет, но какие-то очень слабые процессы ещё могут происходить.
То есть мало того, что вода на Марсе есть, — она кое-где даже не замерзает.
А это снимок, сделанный на основе данных межпланетной станции Mars Reconnaissance Orbiter. Здесь разными цветами обозначен лёд, найденный под поверхностью: сиренево-синие оттенки — самые неглубокие залежи, сантиметров 10–20, зелёный и жёлтый цвет — уже до 70 сантиметров, красный — ещё дальше.
По примерным представлениям, на поверхности и в верхнем слое марсианской мерзлоты примерно пять миллионов кубических километров льда. Если всё это растопить и равномерно распределить по поверхности, получится глобальный океан 35-метровой глубины. Это как минимум. Планетологи подозревают, что в глубине льда ещё больше.
И это тем более поразительно, что при ближайшем рассмотрении марсианского рельефа становится ясно, что сохранившиеся запасы воды — лишь жалкие льдинки по сравнению с тем, что было несколько миллиардов лет назад.
Каким был древний Марс?
Примерно таким. На севере, как предполагают учёные, был океан глубиной до 500 метров, а по площади почти такой же, как наш Северный ледовитый. Атмосфера — возможно, такая же плотная, как на Земле. Летом — до 50 градусов жары по Цельсию.
По мнению учёных, какое-то количество воды было на планете изначально, то есть содержалось уже на этапе её зарождения, но многое было принесено с ледяными или полуледяными метеоритами. Примерно четыре миллиарда лет назад на Марсе шла натурально массированная бомбардировка. Её самые отчётливые последствия наблюдают сейчас на Земле Ноя, это юг планеты. Именно поэтому тот далёкий период в марсианской геологии назвали нойским.
Потом была Гесперийская эра (3–3,8 миллиарда лет назад) — это в честь плато Гесперид, тоже в южном полушарии. Там породы как раз намного моложе, ударных кратеров сравнительно немного, зато есть крупный вулкан Тирренус Монс. Наука считает, что именно так всё и было в те времена: метеоритный обстрел практически закончился, а усилились повсеместные извержения. А вулканы поддерживали на планете настолько тёплый и влажный климат, что на Марсе в то время вполне могла бы быть жизнь. Кстати, на этот счёт имеются весьма интересные научные данные.
Это метеорит весом почти два килограмма, нашли его ещё в 1984 году в Антарктиде. По составу камня учёные с непоколебимой уверенностью определили, что он прилетел с Марса — откололся от поверхности из-за падения на планету какого-то мощного небесного тела примерно четыре миллиарда лет назад. И вот что там рассмотрели в 1990-е годы через электронный микроскоп.
Биологи заявили, что это окаменелые бактерии. Есть, правда, версия, что это земные окаменелые бактерии. Но, с другой стороны, они настолько мелкие, несколько десятков нанометров, что земной науке ничего подобного не известно.
— Если это открытие подтвердится, это, несомненно, станет одним из самых потрясающих открытий в глубинах нашей Вселенной, когда-либо совершённых наукой, — сказал по этому поводу тогдашний президент США Билл Клинтон.
Что случилось с Марсом?
Копилку информации об этом недавно пополнила орбитальная станция Mars Express, она летает вокруг Красной планеты вот уже восемь марсианских лет, то есть 16 земных. На борту работает спектрометр SPICAM, и он в том числе улавливает и анализирует свет, который проходит сквозь атмосферу Марса.
— Этот прибор проводит измерения методом солнечных затмений, когда солнечное излучение наблюдается на просвет через атмосферу. Это очень чувствительный метод, позволяющий измерить вертикальное распределение атмосферных газов с высокой точностью. И водяной пар — один из тех газов, которые измеряет этот прибор, — пояснила Анна Фёдорова.
По её словам, за последние восемь марсианских лет планета пережила уже две глобальные пылевые бури — в 2007 и 2018 годах. По летоисчислению Красной планеты это 28 и 34 марсианские года соответственно: отсчёт ведётся с момента первого отмеченного учёными весеннего равноденствия на планете — 11 апреля 1955 года.
Так вот, спектральный анализ показал, что во время летней пылевой бури водяной пар поднимается на высоту вплоть до 90 километров. А на этой высоте солнечное ультрафиолетовое излучение проходит уже совершенно беспрепятственно, оно разрушает молекулы воды, а отдельные атомы водорода после этого просто уносит в космос.
— Вокруг Марса существует водородная корона, и основным поставщиком водорода туда является именно марсианская вода. Недавно были обнаружены её сезонные изменения, которые говорят, что водород может улетать с планеты быстрее, чем считалось ранее (следовательно, Марс быстрее теряет воду). Одновременные наблюдения этой короны и водяного пара в атмосфере дали возможность определить, как скорость потери воды зависит от её поднятия на большие высоты, — говорит Анна Фёдорова.
Когда Марс оказывается в афелии, то есть улетает подальше от Солнца, на Марсе очень холодно, и водяной пар не поднимается выше 50–60 километров. А когда Марс ближе к Солнцу (перигелий), становится гораздо теплее и пар взлетает высоко.
— Кроме того, внезапно было обнаружено, что скорость диссипации (рассеяния в космосе. — Прим. Лайфа) водорода возрастает в течение недели на порядок. Это было обнаружено в первую пылевую бурю 28-го марсианского года и связано именно с присутствием водяного пара на больших высотах, — отметила специалист ИКИ РАН.
Если так, то на Марсе должно было происходить нечто такое, о чём мы пока не знаем. В лаборатории исследований атмосферы LATMOS Национального центра космических исследований Франции сопоставили измерения SPICAM с другими данными и составили модель возможного темпа обезвоживания Марса. Получилось, что планета каждый миллиард лет теряла примерно двухметровый слой воды. Но есть загвоздка: этого слишком мало. Структура поверхности указывает на то, что при такой скорости сейчас воды на Марсе было бы намного больше, чем есть в реальности.
— Какая-то часть всё-таки ушла в космос. Возможно, это не основная часть, всё-таки это процент, это не всё, но это значительно больше, чем оценивалось ранее, — уверена Анна Фёдорова.
Она добавила, что в этом наверняка замешаны колебания оси вращения планеты — когда-то она была наклонена гораздо сильнее: на все 45 градусов. Значит, полюса лучше разогревались, полярные шапки таяли и заполняли водой атмосферу.
— Из-за прецессии (кругового движения оси вращения планеты) более жаркое лето случается уже на севере, а не на юге, и вода начинает перекачиваться из одного полушария на другое в эти периоды. Возможно, вода на поверхности перемещалась с одного полушария на другое очень много раз, — подчеркнула исследователь.
А ещё Марс не очень симметричен, это называется «дихотомией поверхности»: северное полушарие намного ниже, чем южное.
— Это очень сильно влияет в том числе на перенос воздушных масс, то есть существует много нюансов, — добавила научный сотрудник.
Есть альтернативная гипотеза: большая часть воды никуда не улетела — планета её просто впитала. Исследователи из Калифорнийского технологического института и Лаборатории реактивного движения NASA смоделировали сразу три типа процессов, которые миллиарды лет шли на Марсе: выбросы газов из вулканов, уход частиц водорода из атмосферы в космос и гидратацию минералов — это такой процесс, при котором молекулы воды встраиваются в кристаллическую структуру породы на её поверхности. И, по подсчётам американских учёных, вышло, что именно марсианский грунт вобрал в себя минимум 30%, а то и 90% всей воды, которая на планете была изначально.
Конечно, недра должны были какую-то часть отдавать обратно в результате извержений вулканов, но Марс сравнительно быстро остыл, его тектоническая активность сошла на нет. Учёные подчёркивают, что тем же законам подчиняется и геология Земли: у нас тоже постоянно гидратируются минералы, но наша планета продолжает подавать признаки довольно активной жизни — и землетрясения случаются, и вулканы извергаются. Это означает, что гидратированные породы перемешиваются в раскалённой мантии, вода из них высвобождается и выходит обратно в атмосферу.
Выходит, Марсу одновременно во многом не очень повезло: и ось сильно раскачивается, и орбита не самая удачная, и от Солнца далековато, и магнитного поля для защиты от радиации практически нет. Вдобавок вулканы молчат и полушария по высоте разительно отличаются. Если такой мир можно сделать жизнепригодным, то наверняка жить там будет всё же очень трудно. А впрочем, может быть, именно тогда мы наконец начнём ценить Землю.
Самое интересное из мира науки и технологий — в телеграм-канале автора.
Источник