- Расщепление воды с эффективностью 100%: полдела сделано
- Расщепление воды — Water splitting
- СОДЕРЖАНИЕ
- Электролиз
- Расщепление воды при фотосинтезе
- Фотоэлектрохимическое расщепление воды
- Фотокаталитическое расщепление воды
- Радиолиз
- Наногальванический порошок алюминиевого сплава
- Термическое разложение воды
- Ядерно-тепловой
- Гелиотермический
- Исследовать
- Японцы создали эффективный катализатор для добычи водорода из воды с помощью солнечного света
Расщепление воды с эффективностью 100%: полдела сделано
Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.
Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.
Осталось усовершенствовать полуреакцию окисления.
Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.
В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,
Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.
На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.
Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.
К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.
Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.
Научная работа опубликована в журнале Nano Letters (зеркало).
Источник
Расщепление воды — Water splitting
Расщепление воды — это химическая реакция, в которой вода расщепляется на кислород и водород :
Эффективное и экономичное разделение воды стало бы технологическим прорывом, который мог бы поддержать водородную экономику , основанную на зеленом водороде . Вариант расщепления воды происходит при фотосинтезе , но водород не образуется. В основе водородного топливного элемента лежит обратное расщепление воды .
СОДЕРЖАНИЕ
Электролиз
- Vion, патент США 28,793 , «Улучшенный метод использования атмосферного электричества», июнь 1860 г.
В схемах производства электроэнергии из газа избыточная мощность или внепиковая мощность, создаваемая ветряными генераторами или солнечными батареями, используется для балансировки нагрузки энергосистемы путем хранения, а затем закачки водорода в сеть природного газа.
Производство водорода из воды энергоемко. Потенциальные источники электроэнергии включают гидроэнергетику, ветряные турбины или фотоэлектрические элементы. Обычно потребляемая электроэнергия более ценна, чем произведенный водород, поэтому этот метод не получил широкого распространения. В отличие от низкотемпературного электролиза, высокотемпературный электролиз (HTE) воды преобразует большую часть начальной тепловой энергии в химическую энергию (водород), потенциально повышая эффективность вдвое до примерно 50%. Поскольку часть энергии в HTE поставляется в виде тепла, меньшая часть энергии должна быть преобразована дважды (из тепла в электричество, а затем в химическую форму), поэтому процесс более эффективен.
Расщепление воды при фотосинтезе
Вариант расщепления воды происходит при фотосинтезе , но электроны шунтируются не на протоны, а на транспортную цепь электронов в фотосистеме II . Электроны используются для преобразования углекислого газа в сахара.
Когда фотосистема I подвергается фотовозбуждению, инициируются реакции переноса электронов, что приводит к восстановлению ряда акцепторов электронов, в конечном итоге восстанавливая NADP + до NADPH, а PS I окисляется. Окисленная фотосистема I захватывает электроны из фотосистемы II посредством ряда этапов с участием таких агентов, как пластохинон, цитохромы и пластоцианин. Фотосистема II затем вызывает окисление воды, приводящее к выделению кислорода, причем реакция катализируется кластерами CaMn 4 O 5, встроенными в сложную белковую среду; комплекс известен как комплекс с выделением кислорода (OEC).
При биологическом производстве водорода электроны, производимые фотосистемой, направляются не в устройство химического синтеза, а в гидрогеназы , что приводит к образованию H 2 . Этот биоводород производится в биореакторе .
Фотоэлектрохимическое расщепление воды
Использование электроэнергии, производимой фотоэлектрическими системами, потенциально предлагает самый чистый способ производства водорода, кроме ядерной, ветровой, геотермальной и гидроэлектрической энергии. Опять же, вода расщепляется на водород и кислород при электролизе, но электрическая энергия получается с помощью процесса фотоэлектрохимического элемента (PEC). Система также называется искусственным фотосинтезом .
Фотокаталитическое расщепление воды
Преобразование солнечной энергии в водород посредством процесса разделения воды — это способ получения чистой и возобновляемой энергии. Этот процесс может быть более эффективным, если ему помогают фотокатализаторы, взвешенные непосредственно в воде, а не фотоэлектрическая или электролитическая система, так что реакция протекает в один этап.
Радиолиз
Ядерное излучение обычно разрушает водные связи, в Mponeng золотом прииске , Южной Африки , исследователи обнаружили в природе зоне высокой радиации , сообщество доминирует новый phylotype из Desulfotomaculum , питаясь в основном радиолитическому производства H 2 . Отработанное ядерное топливо / «ядерные отходы» также рассматривается как потенциальный источник водорода.
Наногальванический порошок алюминиевого сплава
Было показано, что порошок алюминиевого сплава, изобретенный исследовательской лабораторией армии США в 2017 году, способен производить газообразный водород при контакте с водой или любой жидкостью, содержащей воду, благодаря своей уникальной наноразмерной гальванической микроструктуре. Сообщается, что он производит водород с выходом 100 процентов от теоретического без необходимости использования каких-либо катализаторов, химикатов или внешнего источника энергии.
Термическое разложение воды
При термолизе молекулы воды расщепляются на атомарные компоненты — водород и кислород . Например, при 2200 ° C около трех процентов всей H 2 O диссоциирует на различные комбинации атомов водорода и кислорода, в основном H, H 2 , O, O 2 и OH. Другие продукты реакции, такие как H 2 O 2 или HO 2, остаются второстепенными. При очень высокой температуре 3000 ° C более половины молекул воды разлагается, но при температуре окружающей среды только одна молекула из 100 триллионов диссоциирует под действием тепла. Высокие температуры и материальные ограничения ограничивают возможности применения этого подхода.
Ядерно-тепловой
Одним из побочных преимуществ ядерного реактора, производящего и электричество, и водород, является то, что он может переключать производство между ними. Например, электростанция может производить электричество днем и водород ночью, согласовывая свой профиль выработки электроэнергии с дневными колебаниями спроса. Если водород можно производить экономично, эта схема будет выгодно конкурировать с существующими схемами хранения энергии в сети . Более того, потребность в водороде в Соединенных Штатах достаточно высока, чтобы такие станции могли справляться со всей суточной пиковой выработкой.
Гибридный термоэлектрический цикл «медь-хлор» — это система когенерации , использующая отходящее тепло ядерных реакторов, в частности, сверхкритического водяного реактора CANDU .
Гелиотермический
Высокие температуры, необходимые для разделения воды, могут быть достигнуты за счет использования концентрированной солнечной энергии . Hydrosol-2 — это 100-киловаттная пилотная установка на Plataforma Solar de Almería в Испании, которая использует солнечный свет для получения необходимой температуры от 800 до 1200 ° C для разделения воды. Hydrosol II находится в эксплуатации с 2008 года. Проект этой 100-киловаттной опытной установки основан на модульной концепции. В результате может быть возможно, что эту технологию можно будет легко расширить до мегаваттного диапазона, умножив доступные реакторные блоки и подключив станцию к полям гелиостата (поля зеркал, отслеживающих солнце) подходящего размера.
Материальные ограничения из-за требуемых высоких температур уменьшаются за счет конструкции мембранного реактора с одновременным извлечением водорода и кислорода, который использует определенный температурный градиент и быструю диффузию водорода. Благодаря концентрированному солнечному свету в качестве источника тепла и только воде в реакционной камере получаемые газы очень чистые, и единственным возможным загрязнителем является вода. «Солнечная установка для взлома воды» с концентратором площадью около 100 м² может производить почти один килограмм водорода за один солнечный час.
Исследовать
Ведутся исследования фотокатализа , ускорения фотореакции в присутствии катализатора. Его понимание стало возможным с момента открытия электролиза воды с помощью диоксида титана. Искусственный фотосинтез — это область исследований, которая пытается воспроизвести естественный процесс фотосинтеза, превращая солнечный свет, воду и углекислый газ в углеводы и кислород. Недавно удалось расщепить воду на водород и кислород с помощью искусственного соединения под названием нафион .
Высокотемпературный электролиз (также HTE или паровой электролиз ) — это метод, который в настоящее время исследуется для производства водорода из воды с кислородом в качестве побочного продукта. Другие исследования включают термолиз на дефектных углеродных подложках, что делает возможным производство водорода при температурах чуть ниже 1000 ° C.
Цикл оксида железа — это серия термохимических процессов, используемых для производства водорода . Цикл оксида железа состоит из двух химических реакций , чистым реагентом которых является вода, а чистыми продуктами — водород и кислород . Все остальные химические вещества перерабатываются. Процесс оксида железа требует эффективного источника тепла.
Цикл серы-йод (СИ цикл) представляет собой ряд термохимических процессов , используемых для получения водорода . Цикл SI состоит из трех химических реакций , чистым реагентом которых является вода, а чистыми продуктами — водород и кислород . Все остальные химические вещества перерабатываются. Процесс SI требует эффективного источника тепла.
Было описано более 352 термохимических циклов расщепления или термолиза воды . Эти циклы обещают производить водород, кислород из воды и тепла без использования электричества. Поскольку вся энергия для таких процессов — тепло, они могут быть более эффективными, чем высокотемпературный электролиз. Это связано с тем, что эффективность производства электроэнергии ограничена по своей природе. Термохимическое производство водорода с использованием химической энергии из угля или природного газа обычно не рассматривается, поскольку прямой химический путь более эффективен.
Суммарная реакция для всех термохимических процессов — это реакция разложения воды:
[<\ce [<\ ce
Все остальные реагенты утилизируются. Ни один из процессов термохимического производства водорода не был продемонстрирован на уровне производства, хотя некоторые из них были продемонстрированы в лабораториях.
Также проводятся исследования способности наночастиц и катализаторов снижать температуру расщепления воды.
Недавно было показано, что материалы на основе металлоорганического каркаса (MOF) являются очень многообещающим кандидатом для расщепления воды дешевыми переходными металлами первого ряда .
Исследования сосредоточены на следующих циклах:
Источник
Японцы создали эффективный катализатор для добычи водорода из воды с помощью солнечного света
Добыча «зелёного» водорода с помощью солнечной энергии — это очень неэффективное занятие. Сначала электричество добывается панелями с низким КПД, а затем производится электролиз воды, что ещё сильнее снижает эффективность добычи. Учёные стремятся пропустить этап получения энергии и мечтают сразу превратить воду в водород и кислород, для чего нужны правильные катализаторы. И такие почти научились делать в Японии.
Источник изображения: MASASHI KATO/NAYOGA INSTITUTE OF TECHNOLOGY
Для расщепления воды на водород и кислород группа японских исследователей создала двухэлектродный фотоэлектрический катализатор с очень большой продолжительностью срока службы. Создаваемые сегодня в лабораториях фотоэлектрохимические катализаторы остаются работоспособными не больше одной недели. Японская разработка расщепляет воду на водород и кислород непрерывно в течение 100 дней, что может считаться рекордом по эффективности. Для автономных необслуживаемых систем в отдалённых районах — это важнейшее свойство.
Впрочем, КПД катализаторов остаётся очень низким — на уровне 0,74 %. Большинство технологий по преобразованию солнечной энергии в «зелёный» водород работают с эффективностью 1–2 %. В Министерстве энергетики США считают, что солнечные установки по добыче «зелёного» водорода выйдут на коммерческий уровень при достижении КПД 5–10 %. Поэтому учёным и промышленности есть к чему стремиться. Но японские катализаторы даже при таком низком КПД остаются рекордсменами по эффективности, поскольку могут работать довольно долго при более простой реализации процесса.
Идея разработки японцев заключается в том, что анод делается полупрозрачным и лежащий ниже катод также использует свет для фотоэлектрохимической реакции. Анод изготавливается из диоксида титана (TiO2) — популярного сырья для производства белой краски, а катод делают из карбида кремния (SiC). Анод реагирует на ультрафиолетовый свет, а катод — на видимый. При этом на электроды подаётся определённое напряжение, чтобы запустить и поддерживать реакцию расщепления. Электроды опускаются в воду (очевидно, они должны быть едва покрыты водой), к ним подводится ток, а всё остальное делает падающий на катализаторы солнечный свет — очень простая схема.
Разработчики говорят, что проблема с низким КПД лежит в плоскости низкой эффективности диоксида титана. На следующем этапе учёные планируют найти замену этому материалу, чтобы к долговечности катализаторов добавить повышенный КПД.
Добавим, это не единственная перспективная разработка для добычи водорода с помощью солнечного света. Совместная работа итальянских и израильских учёных, например, привела к созданию катализаторов из полупроводниковых наностержней с покрытием из платиновых наносфер. КПД нанокатализаторов приблизился к 4 %. В 2019 году бельгийская исследовательская группа из KU Leuven сообщила о прототипе солнечной панели, которая поглощает влагу из воздуха и расщепляет её на водород и кислород с 15-процентной эффективностью. Есть и другие интересные разработки, что в итоге приведёт к желаемому результату — миру, где дышать станет чуточку легче.
Источник