Как называют газообразную воду

Газообразное состояние воды — свойства, примеры

Вода — это самое удивительное вещество на Земле. Именно ей мы обязаны жизнью, так как она участвует во всех процессах жизнедеятельности. Вода обладает самыми необычными свойствами, и еще не все из них ученым удалось объяснить. Например, выяснилось, что она обладает памятью и может реагировать на разные слова. А самое известное свойство воды — это то, что она — единственное вещество, которое может находиться во всех трех агрегатных состояниях. Жидкое — это, собственно, вода, твердое — это лед. Газообразное состояние воды мы можем наблюдать постоянно в виде пара, тумана или облаков. Обычный человек не задумывается о том, что это все вода, он привык называть этим словом только жидкость. Многие даже не знают, как называется газообразное состояние воды. Но именно эта ее особенность обеспечивает жизнь на Земле.

Значение воды

Эта удивительная влага занимает около 70% поверхности Земли. Кроме того, ее можно встретить на огромной глубине — в толще земной коры и высоко в атмосфере. Вся масса воды в виде жидкости, льда и пара называется гидросферой. Она жизненно важна для всех форм жизни на Земле. Именно под влиянием воды формируется климат и погода во всем мире. А существование жизни зависит от ее способности переходить из одного агрегатного состояния в другое. Эта ее особенность обеспечивает круговорот воды в природе. Особое значение имеет вода в газообразном состоянии. Это ее свойство помогает перенести большие массы влаги на огромные расстояния. Ученые подсчитали, что Солнце испаряет за минуту с поверхности Земли миллиард тонн воды, которая в виде облаков переносится на другое место, а потом проливается дождем.

Читайте также:  Почему кашляет собака когда пьет воду

Газообразное состояние воды

Особенностью воды является то, что ее молекулы способны при колебании температуры изменять характер связи друг с другом. Основные свойства ее при этом не меняются. Если нагревать воду, ее молекулы начинают двигаться быстрее. Те, которые соприкасаются с воздухом, разрывают свои связи и смешиваются с его молекулами. Вода в газообразном состоянии сохраняет все свои качества, но приобретает также свойства газа. Ее частицы находятся на большом расстоянии друг от друга и интенсивно двигаются. Чаще всего такое состояние называют водяным паром. Это бесцветный прозрачный газ, который при определенных условиях опять превратится в воду. Он повсеместно распространен на Земле, но чаще всего его не видно. Примеры воды в газообразном состоянии — это облака, туман или водяной пар, образующийся при кипении жидкости. Кроме того, она везде находится в составе воздуха. Ученые заметили, что при его увлажнении дышать становится легче.

Каким бывает пар?

Чаще всего вода переходит в газообразное состояние при изменении температуры. Обычный пар, который всем знаком, образуется при кипении. Именно это беловатое горячее облако мы и называем водяным паром. Когда жидкость при нагревании достигает точки кипения, а при обычном давлении это происходит при 100°, молекулы ее начинают интенсивно испаряться. Попадая на более холодные предметы, они конденсируются в виде капелек воды. Если нагревается большое количество жидкости, то в воздухе образуется насыщенный пар. Это состояние, когда газ и вода сосуществуют, потому что скорость испарения и конденсации одинакова. В том случае, когда в воздухе присутствует много водяного пара, говорят о его повышенной влажности. При понижении температуры такой воздух интенсивно конденсирует влагу в виде капелек росы или тумана. Но для образования тумана мало особых условий температуры и влажности. Нужно, чтобы в воздухе находилось определенное количество пылинок, вокруг которых и конденсируется влага. Поэтому в городах туманы из-за пыли образуются чаще.

Читайте также:  Как откачать воду с сливной ямы

Переход воды из одного состояния в другое

Процесс образования пара называется парообразованием. Его наблюдает каждая женщина при приготовлении пищи. Но существует и обратный процесс, когда газ превращается обратно в воду, оседая на предметах в виде мельчайших капелек. Это называется конденсацией. Каким же образом чаще всего происходит парообразование? В естественных условиях этот процесс называется испарением. Вода испаряется постоянно под воздействием солнечного тепла или ветра. Искусственно образование пара можно вызвать с помощью кипения воды.

Испарение

Это процесс, когда получается газообразное состояние воды. Он может быть естественным или ускоренным с помощью различных приспособлений. Испаряется вода постоянно. Это ее свойство люди издавна использовали для просушки белья, посуды, дров или зерна. Любой мокрый предмет постепенно высыхает благодаря испарению влаги с его поверхности. Молекулы воды в своем движении одна за другой отрываются и смешиваются с молекулами воздуха. Путем наблюдений люди поняли, как можно ускорить этот процесс. Для этого даже были созданы различные приспособления и приборы.

Как ускорить испарение?

1. Люди заметили, что быстрее этот процесс протекает при высокой температуре. Например, летом мокрая дорога высыхает моментально, чего не скажешь об осени. Поэтому сушат предметы люди в более теплых местах, а в последнее время созданы специальные сушилки с подогревом. А в морозную погоду испарение тоже происходит, но очень медленно. Это свойство используют для просушки ценных
древних книг и рукописей, помещая их в специальные морозильные камеры.

2. Испарение происходит быстрее, если площадь соприкосновения с воздухом большая, например из тарелки вода исчезнет быстрее, чем из банки. Это свойство используют при сушке овощей и фруктов, нарезая их тонкими ломтиками.

3. Еще люди заметили, что высыхают предметы быстрее под воздействием ветра. Это происходит потому, что потоком воздуха уносятся молекулы воды, и они не имеют возможности опять конденсироваться на этом предмете. Эта особенность была использована при создании фена и воздушных сушилок для рук.

Свойства воды в газообразном состоянии

Водяной пар в большинстве случаев невидим. Но при высокой температуре, когда воды испаряется сразу много, его можно заметить в виде белого облака. То же самое происходит и в холодном воздухе, когда молекулы воды конденсируются в виде мельчайших капелек, которые мы и замечаем.

Вода в газообразном состоянии может растворяться в воздухе. Тогда говорят, что повысилась его влажность. Существует предельно возможная концентрация водяного пара, которую называют «точкой росы». Выше этого предела происходит конденсация ее в виде тумана, облаков или капелек росы.

Молекулы воды в газообразном состоянии двигаются очень быстро, занимая большой объем. Особенно это заметно при высокой температуре. Поэтому можно наблюдать, как при кипении у чайника прыгает крышка. Это же свойство приводит к тому, что при горении дров слышен треск. Это испаряющаяся вода разрывает волокна древесины.

Водяной пар обладает упругостью. Он способен сжиматься и расширяться при изменении температуры.

Применение свойств водяного пара

Все эти свойства давно изучены людьми и используются для бытовых и промышленных нужд.

  • Впервые газообразное состояние воды применили в паровом двигателе. Много лет это была единственная возможность приводить в движение транспорт и машины в промышленности. Паровые турбины используются и сейчас, а в транспортных средствах бензиновый двигатель уже давно вытеснил паровой. И теперь паровоз можно увидеть только в музеях.
  • Повсеместно и давно пар применяют в кулинарии. Приготовление мяса или рыбы на пару делает их нежными и полезными для всех.
  • Горячий пар используется также для обогрева домов и процессов в промышленности. Паровое отопление очень эффективно и быстро завоевало популярность у населения.
  • Газообразное состояние воды используется сейчас в огнетушителях специальной конструкции, которые применяются для тушения нефтепродуктов и других горючих жидкостей. Нагретый пар перекрывает доступ воздуха к очагу возгорания, прекращая горение.
  • В последние годы стали использовать газообразное состояние воды для ухода за одеждой. Специальные отпариватели не только разгладят деликатные вещи, но и выведут некоторые пятна.
  • Очень эффективно использование водяного пара для стерилизации предметов и медицинских инструментов.

Когда водяной пар вреден?

Есть на Земле и такие места, где вода в газообразном состоянии находится почти всегда. Это долины гейзеров и окрестности действующих вулканов. Находиться человеку в такой атмосфере невозможно. Там тяжело дышать, а повышенная влажность препятствует испарению влаги с кожи, что может привести к перегреву. Также можно сильно обжечься тем паром, который образуется при кипении воды. А туманы могут снижать видимость, приводя к авариям. Но во всех остальных случаях свойство воды переходить в газообразное состояние используется человеком себе на благо.

Источник

Основные агрегатные состояния вещества

О чем эта статья:

Агрегатные состояния вещества

Чтобы разобраться с тем, какими бывают агрегатные состояния, предлагаю по ходу чтения статьи заполнять таблицу.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

Лед, вода и водяной пар — это все три агрегатных состояния одного вещества. Лед — твердое состояние, вода — жидкая, пар — газообразное. Для каждого вещества существует три состояния.

Твердое состояние

Его очень легко представить — это любой предмет, который мы встречаем в жизни. В этом состоянии тело сохраняет форму и объем. Расстояние между молекулами, приблизительно равно размеру самих молекул, которые, в свою очередь, расположены очень структурированно.

Такая структура называется кристаллической решеткой — из-за четкой структуры молекулам сложно двигаться, и они просто колеблются около своих положений.

Заполняем нашу табличку

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

Жидкое состояние

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан, то молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой — он почти не заваривается. А вот если налить кипяточку — чай точно будет готов.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

Газообразное состояние

В жизни мы встречаем газообразное состояние вещества, когда чувствуем запахи. Запах очень легко распространяется, потому что газ не имеет ни формы, ни объема (он занимает весь предоставленный ему объем), состоит из хаотично движущихся молекул, расстояние между которыми больше, чем размеры молекул.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

С агрегатными состояниями разобрались, ура! Но до сих пор неясно, каким образом у каждого вещества их целых три, и как одно переходит в другое. Для этого узнаем, что такое фазовые переходы.

Фазовые переходы: изменение агрегатных состояний вещества

При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.

Фазовые переходы интересны тем, что все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы металлургии и микроэлектроники.

На схеме — названия всех фазовых переходов:

Переход из твердого состояния в жидкое — плавление;

Переход из жидкого состояния в твердое — кристаллизация;

Переход из газообразного состояния в жидкое — конденсация;

Переход из жидкого состояния в газообразное — парообразование;

Переход из твердого состояния в газообразное, минуя жидкое — сублимация;

Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

График фазовых переходов

Если взять процесс превращения льда в воду, воды — в пар, и обратные действия, то мы получим очень информативный график.

Разбираемся по шагам. Сначала взяли лед, конечно, при отрицательной температуре, потому что при нуле лед начинает плавиться. Нагрели лед до температуры плавления (до 0 градусов).

  • AB — нагревание льда

После того, как лед нагрелся до температуры плавления, он начинает плавиться. Плавление происходит при постоянной температуре тем дольше длится, чем больше масса плавящегося вещества. Еще этот процесс зависит от свойств самого вещества, но об этом немного позже.

  • BC — плавление льда

Расправившись вещество уже в жидком состоянии снова начинает нагреваться, и температура увеличивается, пока не достигает температуры кипения. В данном случае нагревается вода — это значит, что ее температура кипения равна 100 градусам Цельсия.

  • CD — нагревание воды

При 100 градусах вода кипит, пока не выкипит целиком. В данном случае процесс аналогично плавлению происходит при постоянной температуре. Данный процесс нельзя путать с испарением, потому что парообразование происходит при конкретной температуре, а испарение — при любой.

  • DE — кипение (парообразование) воды

Далее полученный пар нагревается, но путем нагревания невозможно дойти до другого фазового перехода — можно пойти только обратно.

  • EF — нагревание пара

Первый шаг в обратную сторону — охлаждение до температуры кипения.

  • FG — охлаждение пара

Дойдя до температуры кипения (в данном случае 100 градусов), пар начинает переходить в жидкое состояние. Этот процесс также происходит при постоянной температуре.

  • GH — конденсация пара

Сконденсировавшись, вода охлаждается, пока не начнет замерзать.

  • HI — охлаждение воды

Кристаллизуется (замерзает) вода при той же температуре, что и плавится лед — 0 градусов. Кристаллизация также происходит при постоянной температуре.

  • IK — кристаллизация воды

После кристаллизации лед охлаждается.

  • KL — охлаждение льда

С нагреванием и охлаждением все совсем просто — мы либо передаем теплоту телу (веществу), и оно идет на увеличение температуры, либо тело отдает тепло и охлаждается.

В остальных процессах температура не меняется. Это связано с тем, что количество теплоты не всегда зависит от температуры. Формулы для всех процессов выглядят так:

Нагревание

Охлаждение

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

m — масса [кг]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Плавление

Кристаллизация

Q — количество теплоты [Дж]

λ — удельная теплота плавления вещества [Дж/кг]

m — масса [кг]

Парообразование

Конденсация

Q — количество теплоты [Дж]

L — удельная теплота парообразования вещества [Дж/кг]

m — масса [кг]

Решение задач по фазовым переходам

С теорией разобрались — а теперь давайте практиковаться!

Задачка раз. Температура медного образца массой 100 г повысилась с 20 °С до 60 °С. Какое количество теплоты получил образец? Удельную теплоёмкость меди считать равной 380 Дж/(кг умножить на °С)



    Сначала нужно перевести массу в килограммы:

Берем формулу количества теплоты для нагревания вещества:

Q = 380 * 0,1*(60-20) = 1520 Дж

Ответ: образец получил 1520 Дж

Задачка два. Какое количество теплоты необходимо для плавления 2,5 т стали, взятой при температуре плавления? Удельная теплота плавления стали λ=80кДж/кг. Теплопотерями пренебречь.



    Сначала нужно перевести массу в килограммы и удельную теплоту в Дж/кг:

80 кДж/кг = 80000 Дж/кг

Берем формулу количества теплоты для плавления вещества:

Q = 80000*2500 = 200 000 000 Дж = 200 МДж

Ответ: для плавления 2,5 т стали необходимо 200 МДж теплоты.

Сублимация и десублимация

Мы уже рассказали про такие процессы, как сублимация и десублимация.

  • Переход из твердого состояния в газообразное, минуя жидкое — сублимация (возгонка);
  • Переход из газообразного состояния в твердое, минуя жидкое — десублимация.

Примерчики из жизни🤓

Про белье. Попробуйте повесить белье сушиться на улицу в мороз. Поскольку вода замерзает из-за низких температур, белье должно вернуться домой в виде большого айсберга, но этого не происходит — оно возвращается абсолютно сухим. В данном процессе произошла возгонка молекул воды (сублимация).

Про принтеры. Цветные принтеры (только не лазерные) печатают путем сублимации. Вот как это работает: частицы краски быстро переходят из твердого состояния в газообразное и оседают на бумаге — так получается цветная картинка.

Рисуночки на окнах. Если вы решите проехаться на автобусе в холодную погоду — увидете на стеклах чудесные узоры. Из-за огромной разницы температур между улицей и автобусом, мы можем наблюдать процесс десублимации в виде красивых рисунков на стеклах. Иней образуется похожим способом — резкое похолодание приводит к десублимации воздуха.

Влажность воздуха: испарение и конденсация

Такие процессы, как испарение и конденсация, становятся более логичными и простыми, если их рассмотреть на примере влажности воздуха.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Любое количество пара в воздух не запихнешь, поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь. Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит, что его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Как влажность влияет на человека

Для человека влажность очень важна, потому что мы состоим из воды на 90%. Если окружающей среде нечего испарять, она будет испарять нас. Поэтому при низкой влажности мы чувствуем сухость во рту, а при высокой — волосы впитывают влагу, разбухают и начинают виться. На этом принципе построены некоторые гигрометры — приборы для измерения влажности. Они так и называются — волосяные гигрометры. Только внутри не человеческий волос, а конский, но принцип от этого не меняется.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой, но при высокой влажности пот не может испариться. При испарении пота мы теряем избыточное тепло, а в данном случае этого не происходит.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно, а при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

Влажностью можно управлять. Существуют мешочки с шариками адсорбентами, которые кладут в коробки с обувью, чтобы впитать лишнюю влагу. Чтобы окна не запотевали, можно насыпать в рамы соль, которая также впитает влагу. А если вам наоборот нужно больше влаги — берем увлажнитель воздуха (классная вещь!): он добавляет в воздух водяной пар.

Источник

Оцените статью