Как протекает реакция кальция с водой

Содержание
  1. Кальций: способы получения и химические свойства
  2. Способ получения
  3. Качественная реакция
  4. Химические свойства
  5. Как протекает реакция кальция с водой
  6. Кальций
  7. История и происхождение названия
  8. Нахождение в природе
  9. Изотопы
  10. В горных породах и минералах
  11. Миграция в земной коре
  12. В биосфере
  13. Получение
  14. Свойства
  15. Физические свойства
  16. Химические свойства
  17. Применение
  18. Применение металлического кальция
  19. Металлотермия
  20. Легирование сплавов
  21. Ядерный синтез
  22. Применение соединений кальция
  23. Гидрид кальция
  24. Оптические и лазерные материалы
  25. Карбид кальция
  26. Химические источники тока
  27. Огнеупорные материалы
  28. Лекарственные средства
  29. Биологическая роль кальция
  30. Содержание кальция в продуктах питания:
  31. Рекомендуемые Всемирной Организацией Здравоохранения суточные нормы потребления кальция:
  32. Периодическая система химических элементов Менделеева

Кальций: способы получения и химические свойства

Кальций Ca — это щелочноземельный металл, серебристо-белый, пластичный, достаточно твердый. Реакционноспособный. Сильный восстановитель.

Относительная молекулярная масса Mr = 40,078; относительная плотность для твердого и жидкого состояния d = 1,54; tпл = 842º C; tкип = 1495º C.

Способ получения

1. В результате электролиза жидкого хлорида кальция образуются кальций и хлор :

2. Хлорид кальция взаимодействует с алюминием при 600 — 700º С образуя кальций и хлорид алюминия:

3CaCl2 + 2Al = 3Ca + 2AlCl3

3. В результате разложения гидрида кальция при температуре выше 1000º С образуется кальций и водород:

4. Оксид кальция взаимодействует с алюминием при 1200º С и образует кальций и алюминат кальция:

4CaO + 2Al = 3Ca + Ca(AlO2)2

Качественная реакция

Кальций окрашивает пламя газовой горелки в коричнево-красный цвет.

Химические свойства

1. Кальций — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :

1.1. Кальций взаимодействует с азотом при 200 — 450º С образуя нитрид кальция:

1.2. Кальций сгорает в кислороде (воздухе) при выше 300º С с образованием оксида кальция:

2Ca + O2 = 2CaO

1.3. Кальций активно реагирует при температуре 200 — 400º С с хлором, бромом и йодом . При этом образуются соответствующие соли :

1.4. С водородом кальций реагирует при температуре 500 — 700º C с образованием гидрида кальция:

1.5. В результате взаимодействия кальция и фтора при комнатной температуре образуется фторид кальция:

1.6. Кальций взаимодействует с серой при 150º С и образует сульфид кальция:

Ca + S = CaS

1.7. В результате реакции между кальцием и фосфором при 350 — 450º С образуется фосфид кальция:

1.8. Кальций взаимодействует с углеродом (графитом) при 550º С и образует карбид кальция:

Ca + 2C = CaC2

2. Кальций активно взаимодействует со сложными веществами:

2.1. Кальций при комнатной температуре реагирует с водой . Взаимодействие кальция с водой приводит к образованию гидроксида кальция и газа водорода:

2.2. Кальций взаимодействует с кислотами:

2.2.1. Кальций реагирует с разбавленной соляной кислотой, при этом образуются хлорид кальция и водород :

Ca + 2HCl = CaCl2 + H2

2.2.2. Реагируя с разбавленной азотной кислотой кальций образует нитрат кальция, оксид азота (I) и воду:

если азотную кислоту еще больше разбавить, то образуются нитрат кальция, нитрат аммония и вода:

2.3. Кальций вступает в реакцию с газом аммиаком при 600 — 650º С. В результате данной реакции образуется нитрид кальция и гидрид кальция:

если аммиак будет жидким, то в результате реакции в присутствии катализатора платины образуется амид кальция и водород:

Источник

Как протекает реакция кальция с водой

И.Н. Григорьев, Archer

Реакция лития с водой происходит спокойно — без воспламенения водорода: металл плавает по поверхности воды, выделяя газ. Остальные щелочные металлы реагируют со вспышкой или взрывом.

Небольшие кусочки натрия могут плавать на поверхности воды без воспламенения, но кусочки побольше (примерно с горошину) уже загораются желтым пламенем, а если взять кусочек натрия еще больше — происходит взрыв.

Крохотные кусочки калия еще могут плавать по поверхности воды без взрыва — давая розовое пламя, но кусочки побольше практически сразу взрываются.

Рубидий и цезий еще активнее. Не знаю, что происходит при контакте небольших количеств рубидия или цезия с водой, но кадры, на которых несколько грамм цезия бросают в воду, впечатляют: взрывом может разнести стакан или кристаллизатор.

Реакция цезия с водой

В противоположность щелочным металлам, магний практически не реагирует с холодной водой, реакция начинается только с горячей водой и протекает не особо активно.

В случае металлов средней активности, таких как железо, чтобы реакция с водой протекала с хорошей скоростью, нужно использовать нагретый до высоких температур водяной пар.

По характеру реакции с водой к кальцию ближе всего литий. Есть, однако, и две отличительные особенности. Во-первых, кальций — легкий металл, но все равно он заметно тяжелее воды (плотность кальция 1.55 г/см 3 ), а литий — почти вдвое легче воды (плотность лития 0.53 г/см 3 — литий всплывает не только в воде, но и в углеводородах). Во-вторых, гидроксид кальция плохо растворим в воде, гидроксид лития — хорошо (как и гидроксиды других щелочных металлов).

Перед тем, как приступить к экспериментам, опишем технику работы с кальцием.

Кальций обычно хранят в банках под слоем защитной жидкости — керосина, минерального масла и т.п. В этом он аналогичен щелочным металлам. Однако если экспериментатор достанет полоску металлического кальция, оботрет металл от масла и попытается его разрезать, как натрий или калий, то экспериментатор скоро поймет свою ошибку. На внешнем виде аналогия и заканчивается. Кальций — умеренно-твердый металл, по твердости он примерно соответствует меди или мягкой стали. Другими словами, кальций нельзя резать ножом, как натрий или литий.

Мимо воли вспоминается предмет «методика химического эксперимента». На семинарах там cтуденты ставят демонстрационные опыты из школьной программы с комментариями, как на уроках для учеников, а преподаватель стоит рядом и наблюдает.

Так вот, реакция кальция с водой. Стоит старая банка с кусками кальция в керосине. Препод Марина Ивановна наблюдает. Одногруппница достает большой кусок кальция кладет на фильтровальную бумагу, чтобы керосин промокнуть. Препод молчит, но про себя, вероятно, зловеще ухмыляется, предчувствуя, как она будет издеваться. Одногруппница берет скальпель, намереваясь отрезать кусочек — подобно натрию, и пытается отрезать, — но не тут-то было. Препод начинает жестко насмехаться.

Правильный вариант, по мнению Марины Ивановны, — найти в банке маленький кусочек и его использовать. Понятно, что пассатижи или кусачки легко решают проблему (да и удар молотком расщепляет технический кальций на удобные пластинчатые куски), но это не каноничные варианты, соответственно, инструментов рядом нет.

Итак, если небольшие кусочки кальция в банке отсутствуют, одним ножом, как со щелочными металлами, здесь не обойтись — нужны пассатижи, молоток или т.п. инструменты. Отделенный таким способом кусочек кальция бросим в колбу или стакан с водой.

Кальций опускается на дно, при этом начинается выделение водорода — прежде всего там, где был свежий излом металла. Вскоре со всей поверхности металла активно выделяется газ, это напоминает бурное кипение, одновременно начинает обильно образовываться осадок гидроксида кальция. Кусок кальция всплывает, подхваченный пузырьками водорода.

Через несколько десятков секунд кальций растворяется, а вода становится бело-мутной — из-за образования взвеси гидроксида (поэтому снимать опыт лучше на умеренно-темном фоне).

Если реакцию проводить не в стакане, а в пробирке, легко можно заметить выделение тепла: пробирка быстро становится горячей.

Разумеется, реакция кальция с водой не заканчивается эффектным взрывом, как в случае цезия, но она по-своему красива.

Источник

Кальций


Умеренно твёрдый,
серебристо-белый металл

Свойства атома Атомная масса
(молярная масса) Энергия ионизации
(первый электрон) Электроотрицательность
(по Полингу) Термодинамические свойства простого вещества Плотность Кристаллическая решётка простого вещества Структура решётки Отношение c/a — Температура Дебая
Ca 20
40,078
[Ar]4s 2
Кальций

Ка́льций —элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат. Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций электролитическим методом. Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл, названный кальцием. Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

Нахождение в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.

На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, среди которых наиболее распространённый — 40 Ca — составляет 96,97 %.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48 Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), как было недавно обнаружено, испытывает двойной бета-распад с периодом полураспада 5,3×10 19 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca[Al2Si2O8].

В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.

Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Миграция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2·Са(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение

Свободный металлический кальций получают электролизом расплава, состоящего из CaCl2 (75-80 %) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C:

Свойства

Физические свойства

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия ΔH 0 перехода α → β составляет 0,93 кДж/моль.

Химические свойства

Кальций — типичный щелочноземельный металл. Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

В ряду стандартных потенциалов кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca 2+ /Ca 0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:

С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:

При нагревании на воздухе или в кислороде кальций воспламеняется. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:

3Са + 2Р = Са3Р2 (фосфид кальция), известны также фосфиды кальция составов СаР и СаР5;

2Ca + Si = Ca2Si (силицид кальция), известны также силициды кальция составов CaSi, Ca3Si4 и CaSi2.

Протекание указанных выше реакций, как правило, сопровождается выделением большого количества теплоты (то есть эти реакции — экзотермические). Во всех соединениях с неметаллами степень окисления кальция +2. Большинство из соединений кальция с неметаллами легко разлагается водой, например:

Ион Ca 2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

Важное значение имеет то обстоятельство, что, в отличие от карбоната кальция СаСО3, кислый карбонат кальция (гидрокарбонат) Са(НСО3)2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение:

В тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция:

Так в природе происходит перенос больших масс веществ. В результате под землей могут образоваться огромные провалы, а в пещерах образуются красивые каменные «сосульки» — сталактиты и сталагмиты.

Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жёсткость воды. Временной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО3. Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.

Применение

Применение металлического кальция

Главное применение металлического кальция — это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудновосстанавливаемых металлов, таких, как хром, торий и уран. Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

Металлотермия

Чистый металлический кальций широко применяется в металлотермии при получении редких металлов.

Легирование сплавов

Чистый кальций применяется для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА.

Ядерный синтез

Изотоп 48 Ca — наиболее эффективный и употребительный материал для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева. Например, в случае использования ионов 48 Ca для получения сверхтяжёлых элементов на ускорителях ядра этих элементов образуются в сотни и тысячи раз эффективней, чем при использовании других «снарядов» (ионов).

Применение соединений кальция

Гидрид кальция

Нагреванием кальция в атмосфере водорода получают CaH2 (гидрид кальция), используемый в металлургии (металлотермии) и при получении водорода в полевых условиях.

Оптические и лазерные материалы

Фторид кальция (флюорит) применяется в виде монокристаллов в оптике (астрономические объективы, линзы, призмы) и как лазерный материал. Вольфрамат кальция (шеелит) в виде монокристаллов применяется в лазерной технике, а также как сцинтиллятор.

Карбид кальция

Карбид кальция CaC2 широко применяется для получения ацетилена и для восстановления металлов, а также при получении цианамида кальция (нагреванием карбида кальция в азоте при 1200 °C, реакция идет экзотермически, проводится в цианамидных печах).

Химические источники тока

Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода(например кальций-хроматный элемент). Хромат кальция используется в таких батареях в качестве катода. Особенность таких батарей — чрезвычайно долгий срок хранения (десятилетия) в пригодном состоянии, возможность эксплуатации в любых условиях (космос, высокие давления), большая удельная энергия по весу и объёму. Недостаток в недолгом сроке действия. Такие батареи используются там, где необходимо на короткий срок создать колоссальную электрическую мощность (баллистические ракеты, некоторые космические аппараты и.др.).

Огнеупорные материалы

Оксид кальция, как в свободном виде, так и в составе керамических смесей, применяется в производстве огнеупорных материалов.

Лекарственные средства

Соединения кальция широко применяются в качестве антигистаминного средства.

Кроме того, соединения кальция вводят в состав препаратов для профилактики остеопороза, в витаминные комплексы для беременных и пожилых.-

Биологическая роль кальция

Содержание кальция в продуктах питания:

Рекомендуемые Всемирной Организацией Здравоохранения суточные нормы потребления кальция:

  • Дети до 3 лет — 600 мг.
  • Дети от 4 до 10 лет — 800 мг.
  • Дети от 10 до 13 лет — 1000 мг.
  • Подростки от 13 до 16 лет — 1200 мг.
  • Молодежь от 16 и старше — 1000 мг.
  • Взрослые от 25 до 50 лет — от 800 до 1200 мг.
  • Беременные и кормящие грудью женщины — от 1500 до 2000 мг.

Периодическая система химических элементов Менделеева

Классификация хим. элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона/

Периодическая система элементов

IA IIA IIIB IVB VB VIB VIIB —- VIIIB —- IB IIB IIIA IVA VA VIA VIIA VIIIA
Период
1 1
H
Водород
2
He
Гелий
2 3
Li
Литий
4
Be
Бериллий
5
B
Бор
6
C
Углерод
7
N
Азот
8
O
Кислород
9
F
Фтор
10
Ne
Неон
3 11
Na
Натрий
12
Mg
Магний
13
Al
Алюминий
14
Si
Кремний
15
P
Фосфор
16
S
Сера
17
Cl
Хлор
18
Ar
Аргон
4 19
K
Калий
20
Ca
Кальций
21
Sc
Скандий
22
Ti
Титан
23
V
Ванадий
24
Cr
Хром
25
Mn
Марганец
26
Fe
Железо
27
Co
Кобальт
28
Ni
Никель
29
Cu
Медь
30
Zn
Цинк
31
Ga
Галлий
32
Ge
Германий
33
As
Мышьяк
34
Se
Селен
35
Br
Бром
36
Kr
Криптон
5 37
Rb
Рубидий
38
Sr
Стронций
39
Y
Иттрий
40
Zr
Цирконий
41
Nb
Ниобий
42
Mo
Молибден
(43)
Tc
Технеций
44
Ru
Рутений
45
Rh
Родий
46
Pd
Палладий
47
Ag
Серебро
48
Cd
Кадмий
49
In
Индий
50
Sn
Олово
51
Sb
Сурьма
52
Te
Теллур
53
I
Иод
54
Xe
Ксенон
6 55
Cs
Цезий
56
Ba
Барий
* 72
Hf
Гафний
73
Ta
Тантал
74
W
Вольфрам
75
Re
Рений
76
Os
Осмий
77
Ir
Иридий
78
Pt
Платина
79
Au
Золото
80
Hg
Ртуть
81
Tl
Таллий
82
Pb
Свинец
83
Bi
Висмут
(84)
Po
Полоний
(85)
At
Астат
86
Rn
Радон
7 87
Fr
Франций
88
Ra
Радий
** (104)
Rf
Резерфордий
(105)
Db
Дубний
(106)
Sg
Сиборгий
(107)
Bh
Борий
(108)
Hs
Хассий
(109)
Mt
Мейтнерий
(110)
Ds
Дармштадтий
(111)
Rg
Рентгений
(112)
Cp
Коперниций
(113)
Uut
Унунтрий
(114)
Uuq
Унунквадий
(115)
Uup
Унунпентий
(116)
Uuh
Унунгексий
(117)
Uus
Унунсептий
(118)
Uuo
Унуноктий
8 (119)
Uue
Унуненний
(120)
Ubn
Унбинилий
Лантаноиды * 57
La
Лантан
58
Ce
Церий
59
Pr
Празеодим
60
Nd
Неодим
(61)
Pm
Прометий
62
Sm
Самарий
63
Eu
Европий
64
Gd
Гадолиний
65
Tb
Тербий
66
Dy
Диспрозий
67
Ho
Гольмй
68
Er
Эрбий
69
Tm
Тулий
70
Yb
Иттербий
71
Lu
Лютеций
Актиноиды ** 89
Ac
Актиний
90
Th
Торий
91
Pa
Протактиний
92
U
Уран
(93)
Np
Нептуний
(94)
Pu
Плутоний
(95)
Am
Америций
(96)
Cm
Кюрий
(97)
Bk
Берклий
(98)
Cf
Калифорний
(99)
Es
Эйнштейний
(100)
Fm
Фермий
(101)
Md
Менделевий
(102)
No
Нобелей
(103)
Lr
Лоуренсий
Химические семейства элементов периодической таблицы
Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Переходные металлы
Лёгкие металлы Полуметаллы Неметаллы Галогены Инертные газы

198095, г.Санкт-Петербург, ул.Швецова, д.23, лит.Б, пом.7-Н, схема проезда

Источник

Читайте также:  Живая вода лечит раны
Оцените статью