Как реагирует с водой рубидий

Рубидий: способы получения и химические свойства

Рубидий — это щелочной металл. Белый, мягкий, весьма легкоплавкий. Чрезвычайно реакционноспособный. Сильнейший восстановитель.

Относительная молекулярная масса Mr = 85,468; относительная плотность для твердого состояния d(т) = 1,532; относительная плотность для жидкого состояния d(ж) = 1, 472; tпл = 39,3º C; tкип = 696º C.

Способ получения

1. Рубидий получают в промышленности путем разложения гидрида рубидия при температуре выше 200º С, при этом образуются рубидий и водород :

2RbH = 2Rb + H2

2. В результате электролиза жидкого гидроксида рубидия образуются рубидий, кислород и вода :

4RbOH → 4Rb + O2↑ + 2H2O

3. В результате разложения оксида рубидия при 400 — 550º С получается пероксид рубидия и рубидий:

4. Жидкий хлорид рубидия подвергают электролизу, в результате чего на выходе образуется рубидий и хлор:

2RbCl = 2Rb +Cl2

Качественная реакция

Качественная реакция на рубидий — окрашивание пламени солями рубидия в фиолетовый цвет .

Химические свойства

1. Рубидий — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :

1.1. Рубидий легко реагирует с водородом при 300–350º C и повышенным давлением с образованием гидрида рубидия:

2Rb + H2 = 2RbH

1.2. Рубидий сгорает в кислороде (воздухе) с образованием надпероксида рубидия:

а если сгоранием происходит в холодной среде, то образуется оксид рубидия:

1.3. Рубидий активно реагирует при комнатной температуре с фтором, хлором, бромом и йодом . При этом образуются фторид рубидия, хлорид рубидия, бромид рубидия, йодид рубидия :

2Rb + F2 = 2RbF

2Rb + Cl2 = 2RbCl

2Rb + Br2 = 2RbBr

2Rb + I2 = 2RbI

1.4. С серой рубидий реагирует при температуре 100–130º C с образованием сульфида рубидия:

2Rb + S = Rb2S

2. Рубидий активно взаимодействует со сложными веществами:

2.1. Рубидий реагирует с водой . Взаимодействие рубидия с водой приводит к образованию гидроксида рубидия и газа водорода:

2Rb 0 + 2 H2 O = 2 Rb + OH + H2 0

2.2. Рубидий взаимодействует с кислотами . При этом образуются соль и водород.

2.2.1. Рубидий реагирует с разбавленной соляной кислотой, при этом образуются хлорид рубидия и водород :

2Rb + 2HCl = 2RbCl + H2

2.2.2. При взаимодействии с разбавленной и холодной с ерной кислотой образуется сульфат рубидия, оксид серы (IV), осадок сера и вода:

2.2.3. Реагируя с разбавленной и холодной азотной кислотой рубидий образует нитрат рубидия, газ оксид азота (II), газ оксид азота (I), газ азот и воду:

2.2.4. В результате реакции насыщенной сероводородной кислоты и рубидия в бензоле образуется осадок гидросульфид рубидия и газ водород:

2Rb + 2H2S = 2RbHS↓ + H2

2.3. Рубидий может взаимодействовать с основаниями:

2.3.1. Рубидий взаимодействует с гидроксидом рубидия при температуре 400º С, при этом образуется оксид рубидия и водород:

2Rb + 2RbOH = 2Rb2O + H2

2.4. Рубидий вступает в реакцию с газом аммиаком при 40-60º С. В результате данной реакции образуется амид рубидия и водород:

2.5. Рубидий может вступать в реакцию с оксидами :

2.5.1. В результате взаимодействия рубидия и оксида кремния при температуре выше 300º С образуется силикат рубидия и кремний:

Источник

Рубидий

Мягкий, серебристо-белый металл

Рубидий
Атомный номер 37
Внешний вид простого вещества
Свойства атома
Атомная масса
(молярная масса)
85,4678 а. е. м. (г/моль)
Радиус атома 248 пм
Энергия ионизации
(первый электрон)
402,8 (4,17) кДж/моль (эВ)
Электронная конфигурация [Kr] 5s 1
Химические свойства
Ковалентный радиус 216 пм
Радиус иона (+1e)147 пм
Электроотрицательность
(по Полингу)
0,82
Электродный потенциал 0
Степени окисления 1
Термодинамические свойства простого вещества
Плотность 1,532 г/см³
Молярная теплоёмкость 31,1 Дж/(K·моль)
Теплопроводность 58,2 Вт/(м·K)
Температура плавления 312,2 K
Теплота плавления 2,20 кДж/моль
Температура кипения 961 K
Теплота испарения 75,8 кДж/моль
Молярный объём 55,9 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированая
Параметры решётки 5,710 Å
Отношение c/a
Температура Дебая 56 K
Rb 37
85,4678
[Kr]5s 1
Рубидий

Рубидий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий (CAS-номер: 7440-17-7) — мягкий щелочной металл серебристо-белого цвета.

История

В 1861 году немецкие учёные Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них новый элемент, впоследствии названный рубидием по цвету наиболее сильных линий спектра.

Происхождение названия

Название дано по цвету наиболее характерных красных линий спектра (от лат. rubidus — красный, тёмно-красный).

Получение

Большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов RbAl(SO4)2·12H2O, KAl(SO4)2·12H2O, CsAl(SO4)2·12H2O. Смесь разделяют многократной перекристаллизацией.

Рубидий также выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля. Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия. При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs3[Sb2Cl9]. Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозёма из нефелина.

Для извлечения рубидия используют методы экстракции и ионообменной хроматографии. Соединения рубидия высокой чистоты получают с использованием полигалогенидов.

Значительную часть производимого рубидия выделяют в ходе получения лития, поэтому появление большого интереса к литию для использования его в термоядерных процессах в 1950-х привело к уведичению добычи лития, а, следовательно, и рубидия. Именно поэтому соединения рубидия стали более доступными.

Мировые ресурсы рубидия

Содержание рубидия в земной коре составляет 7,8·10 −3 %. Это примерно равно содержанию никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий — типичный рассеянный элемент. Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,2 %, а изредка и до 1—3 % (в пересчете на Rb2О).

Соли рубидия растворены в воде морей, океанов и озер. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море — 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешел в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15 %. Минерал карналлит — сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl·MgCl2·6H2O. Рубидий дает соль аналогичного состава RbCl·MgCl2·6H2O, причём обе соли — калиевая и рубидиевая — имеют одинаковое строение и образуют непрерывный ряд твёрдых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда. Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Физические свойства

Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твёрдость по Бринеллю 0,2 МН/м² (0,02 кгс/мм²). Кристаллическая решетка Рубидия кубическая объёмно-центрированная, а=5,71 Å (при комнатной температуре). Атомный радиус 2,48 Å, радиус иона Rb + 1,49 Å. Плотность 1,525 г/см³ (0 °C), tпл 38,9 °C, tкип 703 °C. Удельная теплоемкость 335,2 Дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0·10 −5 град −1 (0-38 °C), модуль упругости 2,4 ГН/м² (240 кгс/мм²), удельное объёмное электрическое сопротивление 11,29·10 −6 ом·см (20 °C); рубидий парамагнитен.

Химические свойства

Щелочной металл, крайне неустойчив на воздухе (реагирует с воздухом в присутствии следов воды с воспламенением). Образует все виды солей — большей частью легкорастворимые (хлораты и перхлораты малорастворимы).

Соединения рубидия

Гидроксид рубидия RbOH — весьма агрессивное вещество к стеклу и другим конструкционным и контейнерным материалам, а расплавленный RbOH разрушает большинство металлов (даже золото и платину).

Применение

Хотя в ряде областей применения рубидий уступает цезию, этот редкий щелочной металл играет важную роль в современных технологиях. Можно отметить следующие основные области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.

Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Рубидий имеет хорошую сырьевую базу, более благоприятную, чем для цезия. Область применения рубидия в связи с ростом его доступности расширяется.

Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а также при стерилизации лекарств и пищевых продуктов. Рубидий и его сплавы с цезием — это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы приобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия — это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.

В катализе рубидий используется как в органическом, так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для переработки нефти на ряд важных продуктов. Ацетат рубидия, например, используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что актуально в связи с подземной газификацией угля и в производстве искусственного жидкого топлива для автомобилей и реактивного топлива. Ряд сплавов рубидия с теллуром обладают более высокой чувствительностью в ультрафиолетовой области спектра, чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию как материал для фотопреобразователей. В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).

Гидроксид рубидия применяется для приготовления электролита для низкотемпературных химических источников тока, а также в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.

Хлорид рубидия в сплаве с хлоридом меди находит применение для измерения высоких температур (до 400 °C).

Пары рубидия используются как рабочее тело в лазерах, в частности, в рубидиевых атомных часах.

Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля.

Биологическая роль

Изотопы

В природе существуют два изотопа рубидия: стабильный 85 Rb и бета-радиоактивный 87 Rb (его период полураспада равен 4,923×10 10 лет, это один из изотопов-геохронометров). Искусственным путём получены 30 радиоактивных изотопов рубидия (в диапазоне массовых чисел от 71 до 102), не считая 16 возбуждённых изомерных состояний.

Источник

Читайте также:  Вода сверху у меда
Оцените статью