- Расщепление воды с эффективностью 100%: полдела сделано
- Как из воды извлечь водород
- Парень сделал установку для получения водорода
- Действительно ли установка может вырабатывать водород?
- Как превратить воду в водород: простейший опыт
- Шаг 1: Посмотрите наглядное видео …
- Шаг 2: Механизм генератора водорода
- Шаг 3: Необходимые предметы …
- Шаг 4: Во-первых, точить карандаши …
- Шаг 5: добавь воды в стакан …
- Шаг 6: Теперь подключите провода …
- Как собирать, хранить и поставлять водород
- Где и как хранить водород
- В каком виде транспортировать водород
- Как доставлять водород
- Итого: сколько стоят путешествия водорода
- Как построить водородную цепь добавленной стоимости
Расщепление воды с эффективностью 100%: полдела сделано
Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.
Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.
Осталось усовершенствовать полуреакцию окисления.
Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.
В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,
Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.
На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.
Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.
К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.
Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.
Научная работа опубликована в журнале Nano Letters (зеркало).
Источник
Как из воды извлечь водород
Парень сделал установку для получения водорода
Роман Урсу. В этом видео хотел показать, как можно из 10 лезвий для бритья сделать небольшой генератор, который будет извлекать из воды водород. Для начала понадобится блок питания от 5 до 12 вольт, силы тока от 0,5 до 2 ампер. Медные провода, стеклянная баночка с герметичной винтовой крышкой. Пластиковая бутылка, кусок пластмассовой линейки. Две капельницы. 10 лезвий. Пищевая соль.
Инструменты: паяльник, клеевый пистолет, канцелярский нож.
Приступим к работе. Залудим края лезвий. Далее всё устанавливаем на линейку. Обратите внимание, расстояние между лезвиями минимально, они не должны соприкасаться. Слишком большое пространство между ними оставлять не надо, иначе потребуется мощный блок питания.
Берем проводки и припаиваем через одно лезвие. Схема подключения идентична с аккумуляторными пластинами.
Действительно ли установка может вырабатывать водород?
Генератор водорода готов. Теперь заправим его и протестируем. В качестве топлива используется соляной раствор. Несколько ложек соли и вода из-под крана. Иногда используют разбавители, растворители, пищевую соду. От раствора зависит от температуры пламени. В пластиковую бутылку наливаем воду без примесей. Обратите внимание, чтобы крышечки и соединения не пропускали газа. Настал ответственный момент. Подключить провода к блоку питания и проверить, как добывается водород.
Металлическую крышку заменил на другую, предыдущая была не герметична. Мастер советует использовать банки с крышками поплотнее. Вместо клеевого пистолета использовать холодную сварку, так как силикон со временем смягчается. В целом всё отлично работает.
Как сделать генератор водорода? Конвертер воды в топливо? С помощью электрического воздействия с использованием простой воды можно получить газ и собирать в специальный контейнер и использовать этот газ (водород) для питания двигателей или других приборов. Мы сделаем генератор водорода! Я предлагаю сделать дома! Наблюдая за видеоуроком нам просто нужно найти способ использовать газ, который мы получили от водорода!
Обсуждение
Радж Айер
Год назад
1. Вы генерируете смесь H2 + 02 в соотношении 2: 1. 2. Для чистого газообразного водорода вы должны использовать бутылку с раствором каустической соды, в которую добавляются алюминиевые кусочки. Такая компоновка будет работать, обеспечивая хорошие объемы газа при низком давлении. Однако будьте осторожны, чтобы избежать пламени. Однажды у меня был взрыв, когда я экспериментировал в детстве. Вспышка бутылки и коррозионная щелочь были разбросаны по всему дому. Алюминий превращается в высоковязкую желатиновую соль, называемую натриево-мета-алюминатом. 3. Я хочу, чтобы вы придумали конструкцию, которая разделяет катод и анод, используя некоторую мембрану, которая может выдерживать температуры 100 градусов +, потому что при более высоких токах вода нагревается. 4. Вы не должны наносить много соли в воду. Щепотка соли в 1 литре более чем достаточна для проведения. Если вы используете больше соли, вы фактически генерируете водород вместе с хлором на аноде. Вода будет щелкать, так как ионы натрия будут реагировать с водой с образованием NaOH. Хлор будет генерировать на аноде и разъедать электрод. Поэтому вам нужно использовать углеродные электроды.
Дуайт Уилбанкс
Год назад
Несколько мыслей. Мысль 1, если лезвия были вертикальными, пузыри будут течь на вершину быстрее. Отделившись от ваших тарелок, ваши тарелки снова контактируют с вашим электролитом и могут начать делать следующий пузырь. Вторая мысль касается эффективности напряжения. Идеальное напряжение составляет от 2 до 2,5 вольт, так как вы опускаетесь ниже этого напряжения, производство падает. Когда вы поднимаете выше идеала, вы все равно получаете больше пузырьков, но, кроме того, выделяется больше тепла. Чем дальше от идеала, тем меньше эффективность. Если у вас 5-вольтовый источник, вы должны использовать нейтральную пластинку (много объяснений Google). Итак, пластина 1 положительна, пластина 2 не прикреплена ни к чему, пластина 3 отрицательна, затем повторите. Общая разница в 5 вольт разделяется на два отдельных сегмента в 2,5 вольта. Очевидно, что ваша цель состоит не в том, чтобы сделать самый эффективный инструмент промышленного класса, но с очень небольшими изменениями в вашем дизайне вы можете повысить эффективность. Поскольку соединений меньше, его фактически немного меньше работает как побочный эффект.
piranha031091
2 года назад
Вам НИКОГДА не следует делать это с помощью стеклянного контейнера: в этом контейнере вы получите взрывоопасную смесь водорода и кислорода, поэтому у вас есть очень важная вероятность возникновения обратного огня, который заставит контейнер взорваться. Если он сделан из стекла, взрыв вызовет стеклянную осколку, которая может быть смертельной. (мой коллега несколько месяцев назад взял стеклянную осколку в горло и чуть не умер от того, что в противном случае было очень незначительным взрывом). Пластик для этого гораздо безопаснее.
Shadi2
2 года назад
он добавил соль, поэтому вместо водорода + кислород образует водород + газообразный хлор + гидроксид натрия. Вторая стадия превращает газообразный хлор в соляную кислоту, а гидроксид натрия нагревает воду. Поэтому во введении вода выглядит такой же желтой. За исключением питьевой воды, заливки ее на глаза или выпивки минутного количества хлорного газа, который ускользает, обращение с бритвенными лезвиями является самой опасной частью.
Как превратить воду в водород: простейший опыт
Солнечный генератор водорода / кислорода DIY — простой «электролиз» с использованием солнечного света! (превращает воду в топливо).
Соблюдайте безопасность в опытах с воспламеняющимися веществами!
Я покажу вам, как сделать простое устройство, которое превращает / расщепляет воду на водород и кислород. Это удивительно просто и прекрасно работает. (не забудьте посмотреть видео, так как оно показывает много дополнительных деталей — в том числе пузырьки, просто вылетающие из карандашей). Видео показывает, что генератор водорода питается от солнечной батареи, батареи 9 В и трансформатора переменного / постоянного тока.
Шаг 1: Посмотрите наглядное видео …
Шаг 2: Механизм генератора водорода
Простой эксперимент по «электролизу» показывает, как «расщеплять воду» на кислород / водород с помощью солнечной панели (или батареи) и воды. Графит в карандашах проводит электричество (от солнечной батареи или акб). В результате вода «расщепляется» на кислород / водород (процесс, известный как электролиз). Это видео в основном посвящено использованию солнечной панели, но также показывает батарею на 9 В в качестве источника питания, а также сравнение «нескольких напряжений» (ближе к концу видео) с использованием регулируемого источника питания постоянного тока (установленного через несколько интервалов — 3 В, 4,5 В, 6 В, 7,5 В, 9 В и 12 В).
Посмотрите, как увеличивается объем пузырьков с напряжением. Обратите внимание, что это обычный научный эксперимент в начальной школе, и он абсолютно безопасен. Можно представить, если этот мелкомасштабный эксперимент был «расширен» и усовершенствован, он мог бы стать хорошим способом хранения солнечной / ветровой энергии для последующего использования. очень «зеленая» технология в целом, если источником электричества является солнечный или ветровой (и когда используется водород (в качестве топлива и т. д.), единственным побочным продуктом является вода).
Шаг 3: Необходимые предметы …
1.) 2 карандаша
2.) стакан
3.) маленький кусочек картона
4.) пара проводов (я использовал черные / красные провода с зажимами типа «крокодил»)
5.) маленькая солнечная панель или батарея 9 В или трансформатор переменного / постоянного тока
Шаг 4: Во-первых, точить карандаши …
Заточите карандаши на обоих концах. Затем сделайте 2 маленьких отверстия в куске картона (на расстоянии около 1 дюйма) и протолкните карандаши в отверстия (см. фото выше).
Шаг 5: добавь воды в стакан …
Долейте воды в стакан и поместите деталь (картон и карандаш) поверх стекла.
Шаг 6: Теперь подключите провода …
Теперь просто подключите провода от конца карандашей к источнику питания. Пузыри начнут формироваться немедленно. Одна интересная вещь об этом проекте — многие люди уже будут иметь все необходимое, чтобы сделать это дома. Не нужно ничего покупать (за исключением солнечной панели … но батарея 9v работает хорошо). Сделать водород и кислород дома бесплатно возможно, и все с обычными предметами домашнего обихода.
Получайте удовольствие от создания и использования! Снова посмотрите видео, чтобы увидеть, как пузыри просто стекают с карандашей. Строго соблюдайте технику безопасности!
Источник
Источник
Как собирать, хранить и поставлять водород
В одном из прошлых постов мы выяснили, что в обозримой перспективе себестоимость производства водорода снизится настолько, что этот газ станет конкурентоспособным энергоносителем на транспорте и в энергетике. Но есть ещё одна потенциальная проблема водородной экономики: хранить, транспортировать и поставлять H2 не так просто, как кажется. В этот раз мы расскажем, какие технологии решат эти задач и не «съедят» ли транспортные издержки прибыль будущих водородных магнатов.
В 1870 году Джон Рокфеллер создал в составе зарождавшегося нефтяного концерна Standard Oil бондарные мастерские. Нефтяной бум в США разразился так внезапно, что в ход пошли бочки из-под рыбы и виски объёмом в 42 галлона (почти 159 литров) — те самые баррели. Это было идеальное решение, так как они были подъёмными для грузчиков и подходящего размера для тогдашнего транспорта. Однако цена самого деревянного барреля выросла из-за бума до $3,0 при средней цене на нефть в США в 1870 году $3,86 (примерно $60 сегодня).
Поэтому Рокфеллер справедливо решил, что лучше делать бочки самому, открыл бондарные мастерские в Standard Oil и снизил цену барреля до $1,5 . Какой мы делаем вывод из этой истории? Удельная стоимость массового сырьевого товара почти всегда низкая, поэтому в конечной цене всегда большую роль играют издержки на хранение, преобразованию и поставку. Водород — более капризный груз, чем нефть и природный газ. У него низкая плотность, поэтому, чтобы сохранять экономически значимое количество, бочками не обойтись.
Один килограмм водорода при атмосферном давлении и комнатной температуре занимает 11,2 куб. м. Для сравнения: полный бак водородной Toyota Mirai — 4,7 кг водорода . И хотя сейчас 85% водорода идёт в дело там же, где он производится (нефтепереработка и производство удобрений), чем больше водородомобилей будет ездить по миру, тем острее станет необходимость «порционной» поставки H2 миллионам потребителей. Об это мы расскажем дальше, но сначала разберёмся, где хранить водород.
Где и как хранить водород
По мере превращения водорода из промышленного в потребительский товар — им будут заправлять машины, питать электросистему и отопление домов — его нужно будет запасать в больших количествах. Это нужно будет и для того, чтобы цены на водород не скакали. Причём газ будет храниться долго, поэтому не столько важна скорость закачки/откачки и расположение, сколько объём хранилищ.
Такую технологию давно придумали: много газа можно закачать в пещеры. Сейчас водород закачивают в основном в соляные пещеры — них он почти не загрязняется примесями, а нормированная стоимость хранения — до $0,6 за кг.
Второй естественный резервуар для водорода — истощённые пласты залежей природного газа или нефти и водоносные горизонты. Они больше соляных пещер, но водород в них сильнее загрязняется, вступая в реакцию с горной породой, микробами, жидкостями. В такие пещеры водород пока не закачивают, поэтому считать «экономику» рано.
Карта водородного будущего Европы. Большинство соляных пещер для водорода (обозначены зелёными треугольниками) сосредоточено на севере Германии, в Нидерландах и Франции. Источник: European Hydrogen Backbone Perspective, 2020.
Однако для краткосрочного и мелкомасштабного хранения водорода такие «пещеры горного короля» не подходят — нужны баки. В резервуарах хранят сжатый или сжиженный водород, который можно быстро закачать или откачать в нужных объёмах.
Сжатый водород (при давлении 700 бар, т. е. приблизительно 690 атм.) имеет только 15% плотности энергии (количество энергии на единицу объёма) бензина, и чтобы хранить эквивалентное количество топлива, скажем, на водородной заправке, нужно в семь раз больше места.
Поэтому водород скорее всего будут мешать с аммиаком, у которого плотность больше, а места такой смеси требуется меньше, что позволит транспортировать больше водорода без увеличения объёма хранилища. Правда, придётся потратиться на конверсию и реконверсию смеси.
В каком виде транспортировать водород
Проблема подготовки водорода для транспортировки решается по-разному: H2 сжимают, сжижают, смешивают с другими веществами. У каждого из этих вариантов свои преимущества и недостатки, а оптимальное решение зависит от географии поставок, расстояния, объёма и вида водорода для потребителя.
В любом агрегатном состоянии (кроме твёрдого, конечно) водород можно пустить по имеющимся газовым трубам, что однозначно дешевле, чем строить новую инфраструктуру. Первый кандидат — газовые сети. В мире насчитывается 3 млн километров газопроводов и 400 млрд кубометров подземных хранилищ метана. Но с этим есть технические проблемы:
у водорода низкая плотность энергии, и объёмы (или время) его поставки через газопровод придётся увеличить;
водород очень горюч на воздухе, поэтому чтобы снизить риски, придётся менять оборудование по всей цепочке поставок;
не всякая инфраструктура для, например, метана подойдёт водороду; особенно это касается потребительских котлов, бойлеров и т. п. (об этом подробнее ниже);
потребителям нужен разный газ (одним только чистый водород, другим — смесь), а технологии выделения чистого водорода из полученной смеси повысят конечную стоимость газа на $0,3-0,4 за кг.
В итоге наряду с газообразным водородом нам придётся производить его сжиженные и смешанные версии.
Как адаптировать мелких потребителей к водороду? На рисунке — возможный вариант. Это H2Rex — водородный генератор компании Toshiba (о нём мы рассказывали). Его топливные элементы вырабатывают электричество с помощью электрохимических реакций между полученным водородом и кислородом из атмосферы. Результат — электричество и тепло, которые получает потребитель. Источник: Toshiba ESS
Как и природный газ, водород сжижается. Но проблема в том, что для этого H2 нужно охладить до -253 °C . Если представить, что для охлаждения используется часть самой поставки H2, то на сжижение уйдёт 25-35% её массы.
Такая же операция над природным газом требует только 10% массы. Есть и другой вариант: водород смешивается с другими веществами для перевозки в жидком виде. Главные претенденты на роль «попутчиков» H2 — упомянутый выше аммиак и жидкие органические носители водорода (Liquid Organic Hydrogen Carrier, LOHC), к примеру, метилциклогексан (C7H14). Чтобы смешать водород с аммиаком, нужно 7-18% энергии из объёма поставки. Столько же водорода теряется, когда он выделяется из этой смеси. Но аммиак сжижается при температуре -33 °C и содержит в 1,7 раза больше водорода на кубометр, поэтому аммиачно-водородную смесь транспортировать дешевле, чем чистый водород.
Схожим образом водород можно включить в жидкий органический носитель. На конверсию и реконверсию при этом уйдёт 35-40% водорода, хотя объёмы поставок эти издержки покрывают.
Некоторые жидкие органические носители водорода могут быть негорючими, что делает перевозку безопаснее. Источник: Hydrogenious LOHC Technologies / YouTube
Как доставлять водород
Как и углеводороды сейчас, водород перемещать по миру в основном будут трубы, суда и автоцистерны. Отправлять H2 поездами в целом будет дороже, хотя удалённым потребителям в локациях без трубопровода это возможно. В мире сегодня существует много водородопроводов, но в основном они не выходят за пределы технологических площадок химических и нефтеперерабатывающих заводов. Поэтому более оптимальный вариант — трубы для передачи природного газа.
Однако далеко не все они подходят для прокачки водорода из-за типа стали: трубы из низкопрочной стали будут портиться из-за контакта с водородом (водородное охрупчивание) и давления прокачки. При этом их пропускная способность должна быть в три раза выше из-за низкой плотности водорода. Последнее решается, как мы уже выяснили, смешиванием водорода с жидкостями, и для таких соединений также есть трубопроводы. В частности, трубы используют для прокачки аммиачно-водородной смеси. Один из аммиакопроводов, к примеру, идёт из Тольятти (Россия) до Одессы (Украина) (2,4 тыс. км).
В целом трубы — перспективно самый дешёвый вариант доставки. Себестоимость транспортировки 1 кг водорода в виде газа на расстояние около 1,5 тыс. км составит $1,0. Если пустить по трубам жидкую смесь, то с учётом конверсии и реконверсии она вырастет до $1,5 за кг. Если расстояние увеличивается, то повышается и цена (нужно больше компрессорных станций), поэтому на расстоянии 2,5 тыс. км водород из трубы обойдётся уже в $2,0 за кг.
Однако трубопровод подойдёт не для всех потребителей. В некоторые страны H2 доставят морем. Пока танкеры для перевозки водорода массово не производят. Первое такое судно, получившее название Suiso Frontier, построила компания Kawasaki Heavy Industries, а спустили его на воду в декабре 2019 года в Кобе (Япония). В марте 2020 года на танкер установили резервуар объёмом 1 250 куб. м, в котором водород будут перевозить в сжиженном состоянии.
Водородовоз Suiso Frontier построен в рамках проекта создания безуглеродной цепи поставок водорода из Австралии в Японию. Правда, сам танкер работает на дизельном двигателе , так что безуглеродной цепь не получается. Kawasaki Group Channel / YouTube
В других проектах предполагаются танкеры, схожие по размеру с судами для СПГ, которые в качестве топлива будут сжигать в день примерно 0,2% от перевозимого водорода. Более перспективны в этом отношении танкеры, которые сейчас перевозят сжиженный нефтяной газ (СНГ). В их резервуары можно залить аммиачную и другие подобные смеси водорода. Газовозами доставлять водород дороже, чем по трубопроводам.
Самый затратный способ — везти сжиженный водород на расстояние около 1,5 тыс. км: с учетом расходов на сжижение перевозка встанет в порядка $2,0 за кг, в аммиачной смеси — $1,2, с жидкими органическими носителями — $0,6 за кг. Правда, в отличие от расходов прокачки по трубам, себестоимость морской транспортировки слабо растёт при увеличении расстояния. Альтернатива — автомобильные перевозки. Уже сегодня водород возят в основном тягачи с прицепом или автоцистерны. В первом случае прицеп загружают резервуаром со сжатым водородом.
Правда, обычно перевозят таким способом в пределах 300 км: дальше становится невыгодно. Развитие автоперевозок водорода будет зависеть от вместимости баков. Теоретически один прицеп со сжатым газообразным водородом может вместить до 1 100 кг в лёгких композитных цилиндрах (под давлением 500 бар). Однако этот показатель редко достигается на практике, поскольку правила во всем мире ограничивают допустимое давление, высоту, ширину и вес цистерн.
Потреблять бензин или солярку грузовику совсем не обязательно — его ДВС может работать на всё том же водороде. Hyundai XCIENT Fuel Cell — первый массовый грузовик на водороде, десять копий которого поставили в 2020 в Швейцарию для коммерческого использования. Заправить такой грузовик можно 32 кг водорода, которые ему хватит примерно на 400 км хода. Источник: Hyundai.news
Второй вариант — автоцистерны со сжиженным водородом, если есть постоянные потребители и объёмы поставки компенсируют расходы на сжижение.
Изолированные криогенные автоцистерны могут перевозить до 4 000 кг сжиженного водорода. Их применяют на расстояниях до 4 000 км. Дальше — нельзя: водород нагревается, из-за чего растёт давление. На расстояние до 500 км поставка водорода с жидким органическим носителем (с учётом конверсии) обойдётся в $2,9 за кг. Аммиачная смесь водорода при таких же условиях доедет до потребителя в среднем за $1,5 за кг.
Как видно, экономика автоперевозок зависит от объёма поставок: чем больше требуется водорода, тем более выгодно построить трубопровод. Чем меньше и чем ближе потребитель, тем выгоднее возить водород грузовиками
Итого: сколько стоят путешествия водорода
Прежде чем подвести предварительный итог напомним, во сколько обойдётся производство «зелёного» водорода и при какой цене он станет конкурентоспособным относительно традиционных энергоносителей.
В самых перспективных регионах добычи, откуда будут экспортировать экологически чистый водород (Ближний Восток, Северная и Южная Африка, Индия, Китай, Австралия, Патагония, Мексика, Юго-Запад США), он будет стоит $1,6–3,0 за кг (стоимость производства).
По подсчётам Международного энергетического агентства, наиболее выгодный вариант сухопутной поставки водорода на расстояния до 3,5 тыс. км. — это водород в газообразном состоянии через трубопровод (около $5,5 за кг ; здесь и далее стоимость транспортировки). На больших расстояниях по трубопроводам уже лучше пускать водородно-аммиачную смесь, что обойдётся в $6 за кг (до 5 тыс. км).
Морские поставки от расстояний зависят не так сильно, как от технологии. Дешевле всего перевозить смесь с аммиаком и органическими жидкими носителями (порядка $4,0–4,5 за кг). Дороже отправлять морем сжиженный водород (от $5,5 до $6,0 за кг).
Как видно, с учётом доставки «зелёный» водород на возобновляемых источниках энергии, добытый в Японии, будет дороже импортированного из Австралии или Ближнего Востока. А вот Европа вполне может не зависеть от его поставок из Северной Африки. Источник: International Energy Agency
При этом, по данным Совета по водородной энергетике, нижняя граница конкурентоспособности водорода для грузовиков, автобусов (для дальних перевозок) и электричек составит $4-5 за кг; для отопления и электропитания жилых домов — $3-5 за кг.; для автопогрузчиков — $7-9 за кг.
Но для частных и коммерческих городских перевозок водород останется дорогим, тем более с учётом доставки (нужно, чтобы он был не дороже $1,0-1,5). Однако вариативность подсчётов очень широкая, и для каждого региона и потребителя экономика водородных поставок будет своя.
Более того, мы в Toshiba знаем, как включить в цепь добавленной водородной стоимости новые технологии, которые позволят снизить транспортные издержки.
Как построить водородную цепь добавленной стоимости
Вырисовывается такая картина: в густонаселенных районах Европы и США водород от большого числа местных поставщиков для небольших потребителей в основном будут возить грузовики. Крупные потребители будут получать водород либо по трубопроводам от дальних поставщиков, либо импортировать морем из соседних стран (Латинская Америка для США и Северная Африка с Ближним Востоком — для Европы).
Японии будет сложнее: местный водород будет сравнительно дорогим, поэтому для крупных потребителей возможны поставки морем из стран ближнего и дальнего зарубежья. Правда, водородная энергетика всё-таки будет «демократичнее» углеводородной благодаря доступности возобновляемых источников энергии большому числу потребителей.
Именно на этой основе мы строим водородную цепь добавленной стоимости Toshiba (Toshiba Hydrogen Value Chain). Для крупных потребителей водород могут производить большие солнечные электростанции, наподобие той, что мы построили в Фукусиме . В день она вырабатывает газа на заправку 560 водородных авто и 150 домовладений. Часть водорода отправится грузовиками, часть — по трубам.
В последнем случае конвертировать полученный водород поможет наш генератор на топливных элементах H2Rex, который уже производит электричество и тепло из водорода и воздуха, к примеру, для гостиницы в Кавасаки. Небольшим и удалённым от производства H2 потребителям подойдут мини-электростанции типа нашей H2One. Она вырабатывает водород методом электролиза из воды, который поддерживается встроенной солнечной батареей.
Мы убеждены, что интеграция таких источников и преобразователей энергии в сочетании со строительством водородных электростанций на ВИЭ позволит снизить зависимость потребителей от зарубежных поставок H2, которые могут оказаться для них дорогими.
Источник