характеристики кипения при изменении внешнего давления;
кавитация.
Содержание
Физические свойства воды
Удельная теплоемкость
Важным свойством любого теплоносителя является его теплоёмкость. Если выразить ее через массу и разность температур теплоносителя, то получится удельная теплоёмкость.
Она обозначается буквой c и имеет размерность кДж/(кг • K)
Удельная теплоемкость — это количество тепла, которое необходимо передать 1 кг вещества (например, воды), чтобы нагреть его на 1 °C. И наоборот, вещество отдает такое же количество энергии при охлаждении.
Среднее значение удельной теплоемкости воды в диапазоне между 0 °C и 100 °C составляет:
c = 4,19 кДж/(кг • K) или c = 1,16 Втч/(кг • K)
Количество поглощаемого или выделяемого тепла Q, выраженное в Дж или кДж, зависит от массы m, выраженной в кг, удельной теплоемкости c и разности температур, выраженной в K.
В системах отопления — это разность температур в прямом и обратном трубопроводе. Полученная формула:
V = Объем воды в м3 ρ = Плотность в кг/м3
Масса m — это объем воды V, выраженный в м3, умноженный на плотность ρ воды, выраженную в кг/м3. Таким образом, формулу можно представить в следующем виде:
Q = V • ρ • c ( ϑV — ϑR)
Известно, что плотность воды меняется в зависимости от ее температуры. Однако, чтобы упростить расчеты, используется = 1 кг/дм3 в диапазоне от 4 °C до 90 °C.
Физические термины «энергия», «работа» и «количество тепла» эквивалентны.
Следующая формула используется для преобразования джоулей в другие размерности:
1 Дж = 1 Нм = 1 Втс или 1 МДж = 0,278 кВтч
Увеличение и уменьшение объема
Все природные материалы расширяются при нагревании и сжимаются при охлаждении. Единственным исключением из этого правила является вода. Это уникальное ее свойство называется аномалией воды.
Вода имеет наибольшую плотность при +4 °C, при которой 1 дм3 = 1 л имеет массу 1 кг. Если вода нагревается или охлаждается относительно этой точки, ее объем увеличивается, что означает уменьшение плотности, т. е. вода становится легче.
Это можно отчетливо наблюдать на примере резервуара с точкой перелива.
В резервуаре находится ровно 1000 см3 воды с температурой +4 °C. При нагревании воды некоторое количество выльется из резервуара в мерную емкость. Если нагреть воду до 90 °C, в мерную емкость выльется ровно 35,95 см3, что соответствует 34,7 г.
Характеристики кипения воды
Если воду нагревать в открытой емкости, она закипит при температуре 100 °C. Если измерять температуру кипящей воды, окажется, что она остается равной 100 °C пока не испарится последняя капля. Таким образом, постоянное потребление тепла используется для полного испарения воды, т. е. изменения ее агрегатного состояния. Эта энергия также называется латентной (скрытой) теплотой. Если подача тепла продолжается, температура образовавшегося пара снова начнет подниматься.
Описанный процесс приведен при давлении воздуха 101,3 кПа у поверхности воды. При любом другом давлении воздуха точка кипения воды сдвигается от 100 °C.
Если бы мы повторили описанный эксперимент на высоте 3000 м. — мы бы обнаружили, что вода там закипает уже при 90 °C. Причиной такого поведения является понижение атмосферного давления с высотой.
Чем ниже давление на поверхности воды, тем ниже будет температура кипения. И наоборот, температура кипения будет выше при повышении давления на поверхности воды. Это свойство используется, например, в скороварках.
График справа показывает зависимость температуры кипения воды от давления.
Давление в системах отопления намеренно повышается. Это помогает предотвратить образование пузырьков газа в критических рабочих режимах, а также предотвращает попадание наружного воздуха в систему.
Расширение воды при нагревании и защита от избыточного давления
Системы водяного отопления работают при температурах воды до 90 °C. Обычно система заполняется водой при температуре 15 °C, которая затем расширяется при нагревании. Нельзя допустить, чтобы это увеличение объема привело к возникновению избыточного давления и переливу жидкости.
Когда отопление отключается в летний период, объем воды возвращается к первоначальному значению. Таким образом, для обеспечения беспрепятственного расширения воды необходимо установить достаточно большой бак. Старые системы отопления имели открытые расширительные баки. Они всегда располагались выше самого высокого участка трубопровода. При повышении температуры в системе, что приводило к расширению воды, уровень в баке также повышался. При снижении температуры он, соответственно, понижался.
Современные системы отопления используют мембранные расширительные баки (МРБ).
При повышении давления в системе нельзя допускать увеличения давления в трубопроводах и других элементах системы выше предельного значения. Поэтому обязательным условием для каждой системы отопления является наличие предохранительного клапана.
При повышении давления сверх нормы предохранительный клапан должен открываться и стравливать лишний объем воды, который не может вместить расширительный бак. Тем не менее, в тщательно спроектированной и обслуживаемой системе такое критическое состояние никогда не должно возникать.
Все эти рассуждения не учитывают тот факт, что циркуляционный насос еще больше увеличивает давление в системе.
Взаимосвязь между максимальной температурой воды, выбранным насосом, размером расширительного бака и давлением срабатывания предохранительного клапана должна быть установлена самым тщательным образом. Случайный выбор элементов системы — даже на основании их стоимости — в данном случае неприемлем.
Мембранный расширительный бак поставляется заполненным азотом. Начальное давление в расширительном мембранном баке должно быть отрегулировано в зависимости от системы отопления. Расширяющаяся вода из системы отопления поступает в бак и сжимает газовую камеру через диафрагму. Газы могут сжиматься, а жидкости — нет.
Компенсация изменения объема воды в системе отопления:
Давление
Определение давления Давление — это статическое давление жидкостей и газов, измеренное в сосудах, трубопроводах относительно атмосферного давления (Па, мбар, бар).
Статическое давление Статическое давление — это давление неподвижной жидкости. Статическое давление = уровень выше соответствующей точки измерения + начальное давление в расширительном баке.
Динамическое давление Динамическое давление — это давление движущегося потока жидкости.
Давление нагнетания насоса Это давление на выходе центробежного насоса во время его работы.
Перепад давления Давление, развиваемое центробежным насосом для преодоления общего сопротивления системы. Оно измеряется между входом и выходом центробежного насоса.
Рабочее давление Давление, имеющееся в системе при работе насоса.
Допустимое рабочее давление Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.
Кавитация
Кавитация — это образование пузырьков газа в результате появления локального давления ниже давления парообразования перекачиваемой жидкости на входе рабочего колеса. Это приводит к снижению производительности (напора) и КПД и вызывает шумы и разрушение материала внутренних деталей насоса.
Из-за схлопывания пузырьков воздуха в областях с более высоким давлением (например, на выходе рабочего колеса) микроскопические взрывы вызывают скачки давления, которые могут повредить или разрушить гидравлическую систему. Первым признаком этого служит шум в рабочем колесе и его эрозия.
Важным параметром центробежного насоса является NPSH (высота столба жидкости над всасывающим патрубком насоса). Он определяет минимальное давление на входе насоса, требуемое данным типом насоса для работы без кавитации, т. е. дополнительное давление, необходимое для предотвращения появления пузырьков.
На значение NPSH влияют тип рабочего колеса и частота вращения насоса. Внешними факторами, влияющими на данный параметр, являются температура жидкости, атмосферное давление.
Предотвращение кавитации Чтобы избежать кавитации, жидкость должна поступать на вход центробежного насоса при определенной минимальной высоте всасывания, которая зависит от температуры и атмосферного давления.
Другими способами предотвращения кавитации являются:
Повышение статического давления
Понижение температуры жидкости (снижение давления парообразования PD)
Выбор насоса с меньшим значением постоянного гидростатического напора (минимальная высота всасывания, NPSH)
Источник
По каким признакам и как можно понять, что вода в кастрюле закипает?
Вскипание воды в кастрюле зависит от ряда условий. Играет роль вид источника ее нагревания. Она начинает кипеть при одной температуре, если находится на газовой или электрической плите.
Но для ее вскипания в данных случаях требуется разное количество времени. Процесс закипания можно ускорять разными способами. Определить, что вода начинает закипать, можно по целому ряду признаков.
О том, как понять, что вода закипает в кастрюле, читайте в статье.
От чего зависит вскипание жидкости?
Закипание жидкости напрямую зависит от температуры. Чем сильнее нагревается емкость, тем интенсивнее прогревается содержимое внутри нее.
За счет этого вода быстрее вскипает, достигнув температуры кипения.
Вскипание также зависит от давления воздуха, которое оказывается на поверхность. Если оно падает, то и температура закипания снижается. Вскипание наступает быстрее. Если давление увеличивается, то и температура вскипания уменьшается. Для закипания потребуется большее температурное воздействие.
Вскипание зависит также от диаметра дна кастрюли. Чем оно больше, тем скорее содержимое закипит внутри нее.
Многое зависит от вида применяемого источника нагревания. Вода вскипает через разный временной промежуток, если для ее нагрева используется газовая или электрическая плита.
При скольки градусах вскипает?
На газовой плите вода в таре для варки закипает что с открытой, что с закрытой крышкой при одном и том же температурном значении. Она составляет 100 С.
Его молекулы не улетучиваются и не уносят энергию, которая была затрачена на нагрев. Она возвращается обратно в воду, и она быстрее достигает 100 С, после чего начинает кипеть.
При открытой крышке молекулы воздуха активно улетучиваются в помещение. Водная поверхность быстрее теряет энергию, идущую на ее нагрев.
Она не возвращается обратно в нее. Из-за этого она дольше достигает температуры в 100 С.
Вода закипает в таре на электроплите что с открытой, что с закрытой крышкой при 100 С. Как и в случае с газовой плитой играет роль не разный температурный показатель кипения воды, а теплообмен.
При закрытой крышке пар над водой интенсивнее передает ей энергию. Она быстрее достигает 100-градусного значения. При открытой крышке теплообмен низкий. Большая часть энергии улетучивается в пространство.
Сколько по времени занимает процесс на газовой плите, электроплите?
На закипание воды в емкости, греющейся на газу и электроплите, уходит разное количество времени. Пол-литра вскипает в таре на газовой плите примерно за 3 минуты.
На кипячение литра уходит чуть больше времени. Обычно вскипание начинается через 5 минут.
Как ускорить?
Чтобы в емкости быстрее образовался кипяток, можно использовать следующие способы:
Накрыть кастрюлю крышкой. Самый действенный вариант. Крышка не позволит теплу уходить в помещение. Теплоотдача останется высокой. Воде потребуется меньше времени для закипания.
Использовать кастрюлю с широким днищем. Чем больше диаметр емкости, тем скорее в ней начнется процесс кипения. В таре с широким дном нагрев более равномерный.
Использовать самую большую по размеру газовую или электрическую конфорку. Чем больше по диаметру нагревательный источник, тем интенсивнее будет прогреваться дно емкости.
Соль не ускоряет закипание воды. Она лишь вызывает кратковременный эффект появления пузырьков в ней. Особенно это видно при добавлении соли в уже сильно нагретую воду. Но на время ее закипания это не влияет.
Как определить, что скоро закипит?
Незадолго до начала кипения на дне емкости начинают появляться мелкие пузырьки, наполненные воздухом. С каждой секундой их становится все больше.
Они возникают по всему дну емкости. Также они появляются на части боковых стенок тары. Особенно на участках, расположенных близко ко дну емкости.
Как выглядит кипящая H2O?
Кипяток очень подвижен. На дне тары постоянно образуются крупные пузырьки. Они поднимаются вверх в виде вертикальных столбцов.
На поверхности они быстро лопаются. Некоторые из них какое-то время плавают на поверхности, соединяясь с другими пузырями и лопаясь.
Кипяток в кастрюле бурлит. Над ним непрерывно возникают столбы пара.
Какова температура пара и емкости?
Пар, формирующийся над кипящей водной поверхностью, хорошо проводит тепло. Он нагревается до 100 С. Но такая его температура только у самой водной поверхности. После выделения на поверхность пар стремительно охлаждается. Его градусы падают. Чем дальше от кипящей поверхности, тем меньше градусов становится у пара.
Если у емкости толстые стенки, то ей для закипания воды внутри нее нужен нагрев чуть более 100 С. Она может разогреться и до 110 С, прежде чем содержимое внутри нее начнет кипеть.
Заключение
Кипение жидкости в посуде для варки зависит от температуры и давления. Она закипает при нормальном давлении при 100 С, если кипятится на газовой или электрической плите. Наличие крышки ускоряет время начала кипения.
Вода в таре на газу закипает быстрее, чем на электроплите. Предвестниками кипения являются мелкие пузырьки, формирующиеся на дне кастрюли. Кипяток активно бурлит, а над его поверхностью непрерывно образуется пар.
При кипении дно посуды нагрето до 100 С. Если процесс длительный, то посуда перегревается свыше 100 С. Температура пара над поверхностью составляет 100 С.