Кислород растворяется воде лучше чем азот

Книги по аквариумистике

Лучшая on-line библиотека для начинающих и профессионалов!

Растворенные в воде газы

Газы, из которых состоит воздух, мы находим в воде в других концентрациях: азот, кислород, аргон и двуокись углерода (см. таблицу па стр. 25). Газообразный азот растворяется в воде согласно физическим законам для газов. Он не участвует в химических реакциях, но принимает участие в биологических процессах. Так же пассивно ведет себя инертный газ аргон.

Кислород, необходимый для всех жизненных процессов, следует тем же физическим законам, что и азот. Кислород вступает в интенсивный биологический цикл и является газом для дыхания, всех живых существ за исключением некоторых бактерий. Двуокись углерода, напротив, участвует как в химических, так и в биологических процессах.

Между водой, грунтом и атмосферой происходит постоянный газовый обмен

Газообмен между водой и атмосферой происходит преимущественно на поверхности воды. Газы, такие, как CO2, выделяются из недр Земли и также поглощаются водой. Если вода вытекает из источников в земле, то она также вступает во взаимодействие с атмосферой. Вещества, имеющиеся в воде в избытке, такие, как угольная кислота, переходят в атмосферу. Другие газы, которых нет в воде или есть только в незначительном количестве, напротив, поглощаются. На поверхности воды происходит газообмен с помощью диффузии.

Концентрация определенного газа в воздухе находится в балансе с концентрацией этого же газа в жидкости. Если каким-либо образом концентрация газа в растворе становится более высокой, то на поверхности волы происходит газообмен до тех пор, пока равновесие снова не будет достигнуто. Вода, напротив, поглощает из воздуха значительные количества газов, концентрация которых в воде слишком низка. Концентрация, при которой газообмен приходит к равновесию, называется точкой насыщения. Граница раздела вода/воздух может представлять собой не только ровное водное зеркало. В частности, движение волн, быстрые течения, водопады и, прежде всего, медленно восходящие пузырьки газов приводят, как показано в таблице на стр. 25, к увеличению пограничной поверхности и, таким образом, к интенсивному газообмену в обоих направлениях. Чем быстрее вода передвигается, тем больше становится пограничная поверхность между водой и воздухом, и тем более интенсивным будет массообмен между водой и воздухом, например, в быстром потоке. Это приводит к увеличению поглощения кислорода на порядок по сравнению с поверхностью спокойного озера. Таблица на стр. 25 внизу показывает значения насыщаемости воды кислородом, азотом и двуокисью углерода. Очевидно, что содержание кислорода и азота в воде значительно ниже, чем в воздухе, в то время как двуокись углерода в этих средах имеет примерно равные концентрации. Отметим, что кислорода в воде содержится мало. Это приводит к тому, что живые существа должны предпринимать значительные усилия, чтобы поглощать его в достаточном количестве.

Читайте также:  Вода для систем гвс

Источник

Интересные факты о кислороде

Можно ли представить себе жизнь без кислорода? Конечно же, нет, по крайней мере, на нашей планете. Учёные не исключают возможности того, что в других звёздных системах может существовать жизнь,функционирующая совсем по другим принципам, но на Земле ничто живое, кроме некоторых видов бактерий, не может существовать без кислорода. Которого, кстати, в земной атмосфере намного меньше, чем азота, но нам для дыхания необходим именно кислород, а уж в каком безвредном для наз газе он растворён — дело десятое.

Факты о кислороде

  • Открыт этот элемент был лишь в 18-м веке, несмотря на то, что он является столь важным, и окружает нас повсюду.
  • Кислород способствует горению других элементов, но не горит сам.
  • Первые упоминания об этом уникальном веществе встречаются еще в рукописях 8-го века китайского алхимика Мао Хоа.
  • Кислород растворяется в воде почти в два раза лучше, чем азот. Если бы у этого элемента была такая же растворимость, как у азота, в морях, озерах и реках было бы намного меньше кислорода, что сделало бы жизнь намного труднее для огромного количества живых организмов.
  • В нашей атмосфере на кислород приходится 21%. Остальное — азот и совсем немного других газов.
  • Наземные деревья и растения производят только половину кислорода в атмосфере нашей планеты. Другую половину, по оценкам учёных, вырабатывают способные к фотосинтезу водоросли — фитопланктон, распределённые по мировому океану (интересные факты о водорослях).
  • Слишком большое количество кислорода может привести к отравлению и даже смерти.
  • Чистый кислород без примесей не имеет ни цвета, ни вкуса, ни запаха. Однако чистый кислород редко существует в природе без примесей.
  • Этот газ отвечает за почти две трети веса большинства живых организмов, главным образом потому, что живые существа состоят из большого количества воды, а 88,9 % веса воды составляет именно кислород.
  • Всего пять химических элементов составляют более 90 % веса земной коры. Почти половина этого веса — кислород. Кремний, алюминий, железо и кальций — оставшиеся элементы.
  • В чистом кислороде прекрасно сгорают такие вещества, которые обычно не горят или горят плохо, например, железо.
  • Кислород — второй по активности неметалл после фтора, поэтому он очень активно вступает в химические реакции (интересные факты о металлах).
  • После появления на Земле первой кислородной атмосферы около 99% всех существовавших тогда видов живых существ вымерло, не сумев приспособиться.
  • Всего один пассажирский самолёт во время 9-часового перелета тратит 50-75 тонн кислорода. За такой же период времени приблизительно столько же кислорода получается в процессе фотосинтеза на 25000-50000 гектарах леса.
  • Вся зелень планеты за один только год образует приблизительно 3 триллиона тонн кислорода.
  • В год одно дерево может вырабатывать до 125 кг кислорода. Этого вполне достаточно, чтобы обеспечить свежим воздухом пару человек.
  • Официально первооткрывателем кислорода считается британский естествоиспытатель Джозеф Пристли, который летом 1774 года провел эксперимент, разложив оксид ртути.
  • Для различных видов рыбы требуется неодинаковое количество кислорода. Самый нетребовательный из них — обыкновенный карась (интересные факты о рыбах).
  • Если мы обнаружим какие-либо другие планеты с атмосферами, богатыми кислородом, можно быть практически уверенными, что на этих планетах присутствует жизнь. Значительное количество O2 наблюдается только там, где оно может пополняться живыми организмами.
  • Жидкий кислород может быть намагничен, и он будет притягиваться обыкновенными магнитами.
  • Мозг может жить в течение 4-6 минут без кислорода, а затем начинает умирать. Нехватка кислорода от 5 до 10 минут может привести к необратимым его повреждениям.
  • Полярные океаны, будучи самыми холодными, содержат больше растворенного кислорода и поэтому поддерживают огромное количество живых организмов.
  • В связи с высоким уровнем кислорода в воздухе во время каменноугольного периода насекомые вырастали до гигантских размеров.
  • Озон является одной из форм кислорода. Аллотропной формой, если точнее.
  • Вода (H2O) является самой широко известной молекулой, содержащей кислород. Другие известные молекулы являются окисями, например, окись железа, или ржавчина (Fe2O3), углекислый газ (CO2), окись алюминия (Al2O3) и кварц (SiO2).
  • Мозг человека потребляет около 20% от всего кислорода в организме.
  • В молекулах кислорода, извлечённых из воды, больше тяжёлых изотопов, чем в молекулах атмосферного кислорода.

Источник

Кислород растворяется воде лучше чем азот

Рис. 69. Кривые растворимости некоторых газов в воде

Все жидкости и газы, подобно твёрдым веществам, способны растворяться в воде. Некоторые жидкости, например этиловый спирт, глицерин, ацетон, серная, азотная и уксусная кислоты, неограниченно растворимы в воде — их можно смешивать с водой в любых соотношениях. Бензин, керосин, растительное масло, хлороформ и многие другие жидкости лишь незначительно растворимы в воде, и поэтому их считают практически нерастворимыми. Если такую жидкость, например растительное масло, вылить в воду и взболтать, то через некоторое время образуются два раздельных слоя — верхний (растительное масло) и нижний (вода). О таких жидкостях говорят, что они не смешиваются.

Газы также различаются по растворимости. Наибольшей растворимостью в воде обладают хлороводород HCl и аммиак NH3. При температуре 0 ° С и атмосферном давлении в 1 л воды может быть растворено 500 л хлороводорода и 1200 л аммиака. Водный раствор хлороводорода называют соляной кислотой, а разбавленный водный раствор аммиака — нашатырным спиртом. Растворимость других газов в воде существенно ниже. Так, в тех же условиях в 1 л воды растворяется лишь 1,7 л углекислого газа, 50 мл кислорода, 23 мл азота и 21,5 мл водорода. Хуже всех других газов растворим гелий — 9,7 мл в 1 л воды.

Если холодную водопроводную воду нагревать, не доводя до кипения, то на дне и стенках сосуда образуются пузырьки воздуха, выделяющегося из воды. Это объясняется тем, что растворимость всех газов уменьшается с ростом температуры (рис. 69).

В отличие от жидкостей и твёрдых тел, газы значительно лучше растворяются при повышении давления. Вам, наверное, приходилось открывать пластиковую бутылку с лимонадом или газированной водой. При изготовлении этих напитков воду насыщают углекислым газом при повышенном давлении, а бутылку герметично закрывают. При открывании бутылки давление в ней становится равным атмосферному, и избыточный углекислый газ начинает выделяться, нередко настолько бурно, что вместе с ним из бутылки выливается часть напитка.

Запомните: растворимость газов возрастает при понижении температуры и повышении давления .

Лабораторный опыт 14.

Зависимость растворимости газов

Наполните пробирку водопроводной водой так, чтобы в ней совсем не осталось воздуха, закройте отверстие пальцем, переверните пробирку вверх дном и опустите в стакан с водой. Высушите верхнюю часть пробирки сухой тряпкой или листом фильтровальной бумаги и нагрейте её пламенем спиртовки. Что вы наблюдаете? Предположите, какие газы были растворены в воде. Сделайте вывод об изменении растворимости газов при нагревании.

Вопросы и задания

1. Какие вы знаете жидкости и газы, хорошо растворимые в воде?

2. Почему аквариумы нельзя заполнять кипяченой водой?

3. В воду случайно попал бензин. Как его можно отделить от воды? Будет ли вода иметь запах бензина, если разделение проводить: а) в делительной воронке; б) путём дистилляции?

* 4. При атмосферном давлении и комнатной температуре в 1 л воды может быть растворено 880 мл углекислого газа, а при давлении, которое создаётся в закрытой бутылке, — около 1600 мл. Какой объём углекислого газа выделится при открывании бутылки газированной воды объёмом 2 л? Больше или меньше газа выделится, если бутылку предварительно охладить?

5. Какие из перечисленных газов: кислород, хлороводород, углекислый газ, азот, аммиак, гелий — можно собирать: а) над водой; б) только вытеснением воздуха? Почему?

Источник

AQUAKMV

КИСЛОРОД, УГЛЕКИСЛЫЙ ГАЗ, СЕРОВОДОРОД, АЗОТ В ВОДЕ


КИСЛОРОД, УГЛЕКИСЛЫЙ ГАЗ, СЕРОВОДОРОД, АЗОТ В ВОДЕ

Сообщение Analog » 09 июн 2013, 16:37

Усвоение животными кислорода и удаление углекислого газа столь же необходимо, как пищеварение и усвоение пищи, и является основой всех процессов жизнедеятельности. Потребность в кислороде определяется энергетическими затратами организма на движение, работу внутренних органов, обеспечение потребностей каждой клетки тела. Следует различать физиологические процессы обмена кислородом и углекислым газом между организмом а внешней средой (газообмен) и биохимические процессы использования кислорода и образования углекислого газа в клетках (тканевое или клеточное дыхание). Газообмен — очень важный для организма процесс, эффективность которого обеспечивает в конечном итоге его выживание.
И кислород, и углекислый газ (СО3, другое название — диоксид углерода) представляют собой газоообразные вещества, именно в таком виде они усваиваются или выделяются наземными животными. Их соотношение в атмосферном воздухе составляет в среднем 700:1, что создаёт благоприятные возможности для дыхания. В воде это соотношение совершенно иное. Вследствие ограниченной растворимости максимальное содержание кислорода в воде приблизительно в 20 раз меньше, чем в воздухе. Углекислый газ в отличие от кислорода способен не только растворяться, но и реагировать с водой химически, образуя угольную кислоту. Физический процесс растворения углекислого газа протекает главным образом в кислой среде. В нейтральной и особенно щелочной среде значительная часть диоксида углерода вступает в химические реакции с содержащимися в воде солями.
Худшая (по сравнению с наземными животными) обеспеченность водных животных кислородом в известной мере компенсируется лёгкостью отдачи диоксида углерода, обусловленной его химическим связыванием. Хотя таким образом и облегчается газообмен, в специфических условиях водной среды остаётся нерешённой главная проблема — доступность кислорода. Это послужило причиной возникновения самых различных приспособлений организмов.
Известно, например, что на разных стадиях своего индивидуального развития животные по-разному переносят дефицит кислорода. Так, у рыб, обитающих и размножающихся в озёрах с пониженным содержанием кислорода, часто встречается мелкая икра. Это приводит к увеличению отношения поверхности икринки к её объёму, что облегчает газообмен. Икра других рыб имеет приспособления, обеспечивающие её развитие на богатой кислородом поверхности или в толще воды. Кажущееся на первый взгляд непонятным наличие у многих рыб проточных вод придонной икры связано с гораздо лучшей обеспеченностью их кислородом в сравнении с придонными зонами стоячих вод. Таким образом, для большинства рыб (как и для других водных животных) кислород очень часто является фактором, лимитирующим их развитие и расселение.
Как уже говорилось, углекислый газ является одним из конечных продуктов обмена веществ живых клеток. Газообмен гидробионтов, а также растворённый в воде углекислый газ воздуха — основные источники диоксида углерода в водоёмах. Растворение СО3 сопровождается образованием и диссоциацией угольной кислоты и способствует подкислению водной среды. В свою очередь, поглощение СО2 растениями в процессе фотосинтеза уменьшает активную реакцию водной среды (PH), которая при значительном развитии фитопланктона в период цветения водоёмов смещается в щелочную сторону. При этом растения не только полностью потребляют растворённый СО2, но и способствуют переходу гидрокарбонатов в карбонаты. Растения, в отличие от животных, страдающих от повышения содержания СО3 в воде, отзываются на это усилением фотосинтеза.

Углекислота, или двуокись углерода, при растворении в воде образует слабую кислоту (в литературе её часто называют также угольной кислотой). Но аквариумист не должен путать разные термины, когда они записаны в виде химических формул: Уголь — С (от Саrboneum, уголь). Окись углерода, угарный газ — СО. Двуокись углерода, углекислый газ — СО (газ без запаха и цвета, содержится также в подкормках для растений). Угольная кислота — H2CO3 (растворённая в воде двуокись углерода; слабая кислота).
Первый вывод: углекислота делает воду кислой. Это и есть та самая причина, по которой на водопроводных станциях у воды перед пуском её в потребительскую сеть понижают кислотность. Кислота агрессивна и могла бы воздействовать на систему трубопроводов. Любая природная вода содержит углекислоту в разных количествах, в растворённой или связанной форме. Углекислота связывается с соединениями кальция и магния, иными словами: чтобы в воде был кальций, там должно быть и некоторое количество свободной углекислоты.
Если содержание углекислоты избыточно, ее называют свободной или растворённой. Чем выше доля бикарбоната кальция в воде, тем выше и доля связанной углекислоты. Под удобрением CO2 в аквариумистике подразумевается подкормка аквариумных растений углекислым газом с помощью диффузора. Чтобы усваивать углекислоту, растениям нужно много света. Только благодаря свету может начаться процесс ассимиляции, а основательное поглощение CO2 листья растений доказывают тем, что выпускают крошечные пузырьки кислорода. Если подача углекислоты в аквариумную воду чрезмерна, это скажется на понижении показателя PН. Слишком сильный приток углекислоты мешает свободному дыханию рыб и приносит вред: рыбы зависают прямо под поверхностью воды и пытаются пропустить через свои жабры богатую кислородом воду.
В нарушенной аквариумной среде на верхней стороне листьев растений иногда появляются известковые отложения. Это явление, называемое “биогенным отложением извести” или «бикарбонатной ассимиляцией”, проявляется тем сильнее, чем выше карбонатная жёсткость воды при одновременном мощном освещении. В таком случае из-за недостатка углекислоты процесс идет в обратном порядке. Так как свободной или растворённой углекислоты нет, то растения поглощают нижней стороной листа бикарбонат кальция, растворяют внутри листа связанную углекислоту и выпускают с верхней стороны гидроокись кальция — Са(ОН)2. При этом карбонатная жёсткость воды уменьшается, а показатель PН возрастает. На листьях виден сероватый налёт, и поверхность их на ощупь становится довольно жёсткой (как бы посыпанной порошком).
Многим аквариумистам известно, что в мягкой воде растения развиваются плохо. В первую очередь это связано с тем, что отсутствие извести — это отсутствие амортизатора для углекислоты. С другой стороны, при использовании так называемого удобрения CO2 вполне достаточно небольшой добавки углекислоты, чтобы обильно подпитать растения. В ночное время процесс ассимиляции приостанавливается, а потому подкормку растений CO2 тоже надо прекратить.
Источник кислорода для аквариумных рыб — водные растения и атмосферный воздух. Если поверхность аквариума достаточно велика, а уровень постоянно перемешиваемой воды низок, в этом случае значительное количество кислорода поступает из воздуха. Такой тип аквариума обычно применяется как нерестилище; в них не должно находиться большое количество рыб. В обычном аквариуме, где поверхность воды небольшая, а уровень высок, атмосферного кислорода поступает в воду немного.
Для насыщения воды кислородом существует два способа: механический и биологический. Первый — это аэрация аквариума с помощью компрессора. Об этом способе мы подробно расскажем в разделе: Аэрация и фильтрация. Поступающий при помощи распылителя воздух из нижних слоёв воды в аквариуме выходит на поверхность в виде пузырьков, при этом вода соприкасается с воздухом и обогащается кислородом. Второй способ — это выделение кислорода водными растениями.
При отсутствии в аквариуме водных растений, рыбам не хватает кислорода; в таком случае они держатся на поверхности воды под углом 45 градусов и усиленно хватают воздух ртом. Такое кислородное голодание часто приводит к заболеванию и гибели рыб. Если в аквариуме избыток растений, он должен хорошо освещаться, чтобы происходил процесс фотосинтеза и выделения кислорода, иначе рыбы также могут погибнуть от удушья.

Кислород должен быть растворен в любом аквариуме в возможно большем количестве. Кислород — это газ, чья растворимость в воде зависит от температуры: чем теплее вода, тем быстрее улетучивается кислород. Его нельзя рассматривать только как элемент, необходимый для жизни рыб: очищение воды от ядов тоже зависит от кислорода, потому что разложение ядовитых веществ обеспечивают в первую очередь кислородозависимые бактерии. Вода может поглощать кислород повсюду, но в природных водах (реки, озера, пруды) это происходит почти исключительно на поверхности. Вода колодцев и источников кислородом поэтому бедна.
Если аквариумная вода активно обогащается кислородом за счёт подачи внешнего воздуха, то он может вытеснить имеющуюся углекислоту. В литературе по аквариумистике часто используется термин “насыщение кислородом”.
Да, действительно можно достичь не только насыщения, но и перенасыщения воды кислородом, если за счёт ассимиляции растений он скапливается в избыточном количестве. Поглощение кислорода определяется температурой воды. Чем холоднее вода (над точкой замерзания), тем больше кислорода она может принять. Это касается и других газов, например, углекислого, хотя и в ином масштабе.

Источник

Оцените статью