Ключевой элемент биосферы азот фосфор вода

Круговорот углерода, азота, фосфора, кислорода,воды

Круговорот углерода

Общие запасы углерода в биосфере составляют около 20 000 000 млрд т. Они более чем на 99% состоят из отложений СаСО3. Лишь около 10 000 млрд т углерода находится в виде ископаемого топлива (уголь, нефть, газ). В неживой органике углерода: в океане — 3000 млрд т, в почве — 700 млрд т. Содержание углерода в биомассе (млрд т): наземные растения — 450, поверхностные слои моря — 500, фито-, зоопланктон и рыбы — 1020. В атмосфере воздуха в виде СО2 — около 1000 млрд т.

Запасов углерода очень много, но лишь диоксид углерода СО2 воздуха представляет источник углерода, который усваивается растениями в количестве около 35 млрд т в год.

В процессе фотосинтеза СО2 превращается в сахара, жиры и другие вещества. Например:

Возврат углерода в атмосферу происходит в процессе дыхания животных и растений (около 10 млрд т), разложения организмов в почве (в виде СО2, углеводородов, меркаптанов; около 25 млрд т). Сверх биогенного, сбалансированного углерода в атмосферу поступает антропогенный диоксид углерода после сжигания углеродного топлива (уголь, нефть, газ, сланцы, лес и т.п.; 5 млрд т) и природный его диоксид — при извержении вулканов.

В морях и океанах некоторые организмы, умирая, опускаются на дно (в частности, скелеты фитопланктона) и образуют карбонатные осадочные породы, а неразложившееся органическое вещество — ископаемое углеродное топливо. Обмен СО2 воздуха с поверхностными морскими водами составляет: растворение в воде 100 млрд т, выделение из воды — 97 млрд т.

Читайте также:  Бассейн с синей водой

Быстрый круговорот углерода связан с живыми организмами: а) потребление СО2 в процессе фотосинтеза органических веществ, б) выделение СО2 при дыхании организмов и разложении органики. Его длительность зависит от времени жизни организма. Так, углерод лесов совершает круговорот примерно за 30 лет средний срок жизни дерева. Леса являются главным потребителем СО2 на суше и основным хранилищем биологически связанного углерода. Они содержат около 2/3 его атмосферного запаса.

Медленный круговорот углерода включает ископаемое топливо, что исключает углерод из оборота на длительное время миллионы лет. Он возвращается в атмосферу в виде СО2 в результате сжигания ископаемого топлива человеком и при извержении вулканов.

Круговорот азота

Океан воздуха, окружающий Землю, содержит 78% азота. Однако большинство организмов неспособны непосредственно усваивать атмосферный азот. Они используют в основном связанный азот: нитраты, аммонийный и амидный азот.

Круговорот азота состоит из следующих процессов: получение связанного азота, использование его живыми организмами, преобразование соединений азота в свободный азот.

Варианты получения связанного азота (млн т/год): синтез оксидов азота в атмосфере грозовыми разрядами — 7,6; фиксирование атмосферного азота микроорганизмами — 30, бобовыми — 14, синезелеными водорослями — 10; синтез азотных удобрений человеком — 30. Всего около 92 млн т/год связанного азота.

Круговорот связанного азота в биосфере. Азот в форме нитратов используется растениями для синтеза протеинов, являющихся составной частью всех клеток растительных и животных организмов. Содержание азота в тканях около 3%. Протеины при отмирании служат питанием целой цепи почвенных организмов. Они, разлагая органическое вещество, переводят органический азот в аммиак. Другие бактерии переводят аммиак в нитраты. Последние снова используют растения, и цикл превращений азота в пищевой цепи повторяется.

Окисление азота аммиака до нитритов осуществляется с участием бактерий Nitrosomonos (реакция нитрификации):

NH3 + 1,5O2 — HNO2 + H2O + 273 кДж/моль. (1.2)

Выделяющейся при этом энергии вполне достаточно для существования этих бактерий. Это исключительный случай в живой природе, который позволяет поддерживать существование живых организмов без энергии Солнца. Они не потребляют энергию, запасенную в органических веществах, а используют энергию окисления неорганических веществ. Другие микроорганизмы способствуют окислению нитритов дальше до нитратов с выделением энергии в 71 кДж/моль, что позволяет им выживать, так же как и вышеуказанным бактериям.

Аммиак почвы может усваиваться растениями и без его нитрификации. При этом он включается в аминокислоты и становится частью белка растения, а после поедания растений переходит в животные белки. Белок возвращается в почву, где он распадается на аминокислоты, которые окисляются при участии бактерий до СО2, Н2О, NH3. И цикл повторяется.

Связанный азот в количестве 2-3 млн т/год в виде растворимых соединений попадает с водой в океан и надолго теряется для биосферы в донных отложениях. Эти потери в основном компенсируются соединениями азота из вулканических газов.

Денитрификация

Денитрификация это процесс освобождения связанного азота посредством его восстановления с участием бактерий денитрификаторов. Например:

Денитрификация идет в анаэробных условиях, т.е. в отсутствие кислорода как на суше (43 млрд т/год), так и в море (40 млрд т/год) с образованием 83 млрд т азота в год. На суше бактерии активны в почвах, богатых соединениями азота и углерода, особенно в навозе.

Несмотря на потери связанного азота из-за денитрификации (83 млрд т/год), в биосфере идет его накопление в количестве около 92 — 83 = 9 млрд т/год. Причина излишка — производство человеком избыточного количества азотных удобрений. Таким образом, круговорот азота нарушен на 10%, что становится опасным, так как вода загрязняется нитратами. Человечество ожидают новые осложнения из-за быстрого увеличения количества азотсодержащих отбросов в связи с резким возрастанием народонаселения и поголовья скота.

Круговорот фосфора

Значение фосфора для биосферы. Фосфор — составная часть важнейших для организмов органических соединений, например, таких как рибонуклеиновая (РНК) и дизоксирибонуклеиновая (ДНК) кислоты, входящих в состав сложных белков. Соединения, содержащие фосфор, играют существенную роль в дыхании и размножении организмов. При достатке фосфора повышается урожай, засухоустойчивость и морозоустойчивость растений, увеличивается в них содержание ценных веществ: крахмала в картофеле, сахарозы в свекле и т.п. Недостаток фосфора ограничивает продуктивность растительности в большей степени, чем недостаток любых других веществ, исключая воду.

Усвояемые соединения фосфора. Растения используют фосфор из почвенного раствора в виде соединений фосфорной кислоты — ионов Н2РО4 — , НРО4 2- . В почве их образуют три группы усвояемых фосфорных соединений: природные, органические и промышленные.

В земной коре фосфора довольно много — около 0,1% по массе. Разведанные запасы фосфатного сырья составляют около 26 млрд т. Известно примерно 120 фосфорсодержащих минералов: апатит, фосфориты, фосфаты алюминия, железа, магния и др. Однако все они трудно растворимы в воде и, следовательно, малоэффективны. Для растений фосфорные соединения доступны только после их дефосфорилирования — ферментативного расщепления организмами почвы. Доля такого фосфора в питании растений составляет 20-60%. Промышленность выпускает фосфорные удобрения, которые хорошо усваиваются растениями. Это двойной суперфосфат Са(Н2РО4)22О, фосфат аммония, нитрофоска и др.

Круговорот фосфора: а) усвоение растениями (продуцентами); б) потребление животными (консументами), редуцентами; в) дефосфорилирование. В природном круговороте фосфора имеется существенный его дефицит, около 2 млн т в год. Это потери его растворимых соединений, включенных в природный круговорот воды. Достигая с водой океана, они теряются на его дне в отложениях. В круговорот из океана возвращается лишь около 60 тыс. т фосфора в год в виде прибрежного гуано (помет и останки птиц, питающихся рыбой) и рыбной муки из выловленной рыбы. Считается, что круговорот фосфора — единственный в природе пример простого незамкнутого цикла. Человек, производя фосфорные водорастворимые удобрения, ускоряет убыль природных фосфатов, расходуя около 3 млн т в год апатита и фосфоритов. При таком расходе их хватит примерно на 10 тыс. лет.

Круговорот кислорода

Запасы кислорода в биосфере очень большие, примерно 50% ее массы. В ней он самый распространенный элемент. Основное количество связанного кислорода приходится на гидросферу и литосферу. В песке его около 53%, глине 56%, воде — 89%. Свободный кислород содержится в атмосфере в количестве 1 200 000 млрд т, что составляет лишь 0,01% его общего количества. Большая часть атмосферного кислорода — продукт фотосинтеза растений.

Схема круговорота кислорода: а) генерация растениями в процессе фотосинтеза (около 16 млрд т/год); б) потребление живыми организмами при дыхании; в) расход на окисление биогенного вещества.

Для высших форм жизни (растения, животные) пригодно аэробное дыхание — прямое окисление кислородом органики, например, глюкозы:

Большое количество энергии, которая выделяется при дыхании и окислении веществ в организме с участием кислорода, идет на поддержание жизнедеятельности высших организмов, которая требует значительных энергетических затрат, например, при перемещениях. Для низших организмов большое выделение тепла опасно. Они приспособились проводить окисление органики в анаэробных условиях (без О2) с помощью ферментов (см. выше).

Скорость круговорота кислорода в биосфере в нашу эпоху составляет около 2500 лет.

Небольшая часть кислорода постепенно уходит в осадочные породы: карбонаты, сульфаты. Однако эти процессы идут весьма медленно и в целом не влияют на главный круговорот атмосферного кислорода. Опасность представляет антропогенный фактор. Так, за последние 100 лет человеком при сжигании топлива изъято из атмосферы около 250 млрд т кислорода и добавлено около 380 млрд т СО2. Ежегодный прирост расхода кислорода человеком около 5%.

Круговорот воды

Воды на Земле много — 1,5 млрд км 3 , но пресных вод меньше 3%. Основная масса пресной воды — 29 млн км 3 (75%) — находится в ледниках Арктики и Антарктиды, около 13 млн км 3 — в атмосфере, 1 млн км 3 — в живых организмах. Лишь всего 0,003% воды, т.е. около 0,04 млн км 3 , представляют объем ежегодно возобновляемых водных ресурсов.

Большой круговорот воды (40-45 тыс. км 3 )

испарение воды в океанах и на суше под действием Солнца;

перенос паров воды с воздушными массами;

выпадение воды из атмосферы в виде дождя и снега;

поглощение воды растениями и почвой,

сток воды по поверхности суши и возвращение в моря и океаны. Этот круговорот воды хорошо замкнут. Он вместе с энергией Солнца является важнейшим фактором обеспечения жизни на Земле, так как при этом происходит перенос и перераспределение не только воды — основы жизни, но и тепла, поглощающегося при испарении воды и выделяющегося при ее конденсации.

Круговорот воды в экосистемах

Здесь различают 4 фазы:

перехват, т.е. поглощение воды листьями, кроной, до того как она достигнет почвы;

эвапотранспирация: (лат. evaporatio — испарение, transpirere — испарение растениями) — отдача воды экосистемой в атмосферу за счет ее биологического испарения растениями и испарения с поверхности почвы;

инфильтрация — просачивание воды в почву, затем перенос грунтовых вод и испарение;

сток — потеря воды экосистемой за счет ее стока в ручьи, реки и затем в моря, океаны.

Величина эвапотранспирации — это сумма биологической тран-спирации воды растениями и испарения ее с поверхности почвы. В Европе она оценивается как 3-7 тыс. т/га в год, из них около 1 тыс. т/га за год воды испаряется с поверхности почвы.

Велика биологическая транспирации воды растениями, что необходимо для извлечения питательных веществ и поддержания температурного режима тканей. Так, за день одна береза испаряет 75 л воды, бук — 100 л, липа — 200 л, 1 га леса — 50000 л.

Коэффициент транспирации — количество воды, транспирируемое растением в сезон для создания 1 кг сухого вещества. Он весьма велик и составляет от 300 до 1000 в зависимости от вида растения. Например, для получения 1 т зерна требуется от 250 до 550 т воды.

Пример схемы круговорота воды

Рассмотрим типичное распределение осадков, количество которых составило 770 мм/год.

Эвапотранспирация воды идет в объеме 400 мм/год и слагается из следующих видов (мм/год): перехват кронами — 10, транспирация растениями — 290, испарение с поверхности почвы — 100.

Поверхностный сток воды, равный испарению воды с поверхности моря, составляет 370 мм/год. Его слагаемые (мм/год):

подземный сток — 80

физическое испарение — 265

нужды человека — 25

Как видно из примера, растениями транспирируется почти 40% воды [« (290 / 770)-100%]. Однако на формирование биомассы используется лишь около 1% воды [« (10 / 770)-100%].

На бытовые нужды человеком расходуется порядка 3% воды.

В отличие от углерода, азота и фосфора вода проходит через экосистемы почти без потерь.

Источник

Биосфера

Биосфера (греч. bios — жизнь + sphaira — шар) — наружная оболочка Земли, населенная живыми организмами, составляющими в совокупности живое вещество планеты. Термин «биосфера» предложен австрийским геологом Э. Зюссом, учение о биосфере было создано и развито российским и советским ученым Вернадским Владимиром Ивановичем.

Биосфера — совокупность всех биогеоценозов, это открытая система, структура и свойства которой определяются деятельностью организмов в прошлом и настоящем. Биосферу можно рассматривать как часть лито-, гидро- и атмосферы, заселенную живыми существами.

Запомните, что наибольшая концентрация живого вещества сосредоточена на границе сред (к примеру, на границе литосферы и атмосферы).

Границы биосферы

Общая толщина биосферы приблизительно 17 км. Живые организмы проникают вглубь литосферы на расстояние до 6-7 км, заселяют всю толщу гидросферы (до самого дна мирового океана). В атмосфере живые организмы встречаются в нижней части — тропосфере, которую сверху ограничивает озоновый слой (часть стратосферы).

Выше «озонового экрана» существование жизни в привычном для нас виде невозможно, так как губительное УФ (ультрафиолетовое) излучение уничтожает все живое. Возникновению жизни в недрах Земли препятствует высокая температура, оказывающая разрушительное воздействие.

Вещество биосферы

Многокомпонентная сложная система биосферы включает несколько отдельных элементов. Вернадский В.И. создал учение, в соответствии с которым вещество биосферы состоит из:

    Живое вещество

Совокупность всех живых организмов на нашей планете. Именно Вернадский показал, что деятельность живых существ — важнейший фактор геологических изменений планеты.

Формируется без участия живых организмов. Базальт, гранит, песок, золотоносные руды. К косному веществу можно отнести горные породы магматического происхождения, образовавшиеся в результате извержения вулканов.

Это вещество образуется живыми организмами в процессе их жизнедеятельности. Примерами биогенного вещества могут послужить залежи известняка, природный газ, кислород, нефть, каменный уголь, торф.

Биокосное вещество создается одновременно деятельностью живых организмов и косными процессами. Таким образом, биокосное вещество объединяет в себе живое и косное вещества.

К биокосному веществу относятся пресная и соленая вода, почва, воздух. Почва является верхним наиболее плодородным слоем литосферы Земли. Почва — уникальный продукт совместной деятельности живых организмов, то есть биологических и геологических процессов, протекающих в живой природе.

Функции живого вещества

Важнейший компонент биосферы — живое вещество, то есть — живые организмы. Их деятельность приводит к наиболее значительным геологическим изменениям в биосфере, они обеспечивают круговорот веществ — главное условие зарождения новой жизни.

Перечислим важнейшие функции живого вещества:

    Энергетическая

Живые организмы постоянно получают и преобразуют энергию. Растения преобразуют энергию солнечного света в энергию химических связей, а животные передают ее по цепочке. После смерти растений и животных энергия возвращается в круговорот благодаря бактериям и грибам — сапротрофам (греч. sapros – гнилой), разлагающим мертвое органическое вещество.

Деятельность живых организмов обеспечивает постоянный газовый состав атмосферы. В ходе дыхания животные поглощают кислород и выделяют углекислый газ, а растения в ходе фотосинтеза поглощают углекислый газ и выделяют кислород. Бактерии хемотрофы также выделяют в атмосферу некоторые газы, полученные окислением сероводорода, азота.

Я никогда не перестану восхищаться этой функцией живого вещества. Вы только вдумайтесь: на одной и той же почве, рядом друг с другом, растут совершенно разные растения по форме, размеру и окраске плодов, цветков! Каждый раз задумываешься: как это возможно?

Это связано с тем, что каждое живое существо избирательно накапливает определенные химические элементы. К примеру, многие моллюски накапливают кальций, образуют известковый скелет — раковину. После их смерти раковины опускаются на дно, в результате чего создаются залежи полезных ископаемых — известняка (мела).

В результате жизнедеятельности мха сфагнума образуется полезное ископаемое — торф, а папоротниковидные образуют каменный уголь. Это концентрат углеродистых и кальциевых соединений в погибших растениях, которые тысячелетиями отмирали и образовали залежи ископаемых.

Живые организмы способны окислять и восстанавливать различные химические вещества. На реакциях окисления и восстановления основан метаболизм (обмен веществ) любого живого существа, подобные реакции протекают постоянно в ходе фотосинтеза, энергетического обмена.

Без разрушения «старой» жизни, невозможно возникновение «новой». После смерти живых существ их останки подвергаются разрушению, из них высвобождается энергия, накопленная в связях химических веществ. Непрерывный круговорот должен продолжаться всегда — это главное условие жизни.

Теория биогенной миграции атомов Вернадского В.И.

При непосредственном участии живого вещества в биосфере непрерывно осуществляется биогенная миграция атомов. Даже сейчас, с каждым вашим вдохом, атомы кислорода соединяются с гемоглобином эритроцитов, доставляются по крови к клеткам тканей организма и становятся частью ваших клеток.

Откуда взялся кислород, которым мы дышим? Его в процессе фотосинтеза выделили растения. Для процесса фотосинтеза необходим углекислый газ, который в процессе дыхания выделяют животные, углекислый газ, который образуется при разложении останков растений и животных. Получается круговорот атомов.

Все атомы, которыми мы обладаем, которые стали частью наших рук, глаз, носа, языка — все эти атомы кому-то принадлежали до нас! За миллиарды лет существования Земли они успели побывать в мириадах растений, грибов и животных. То, что наши атомы сейчас с нами — великое чудо и немыслимая случайность.

Я искренне восхищаюсь этой теорией, она показывает непрерывность жизни, бесконечность нашего существования и единство всего живого.

Ноосфера

Ноосфера (греч. noos — разум и sphaira — шар) — термин введенный русским ученым В.И. Вернадским. Ноосфера подразумевает взаимодействие природы и общества, при котором человек является главным определяющим фактором эволюции. Человек становится крупнейшей геологической силой.

Споры о том, можно ли считать современный этап развития цивилизации ноосферой остаются открытыми. Основная идея ноосферы — разумное, рациональное поведение человека, при котором он сосуществует в гармонии со всеми другими формами жизни.

К сожалению, нынешняя ситуация напоминает старую поговорку: «Пока не потеряешь, не осознаешь ценность». Неужели растения должны исчезнуть с лица Земли, чтобы мы вспомнили о том, что благодаря фотосинтезу в их листьях мы дышим кислородом? В этом случае чувство нашего ложного величия может сильно пострадать.

Круговорот веществ

Углерод находится в природе в основном в составе углекислого газа, угольной кислоты и ее нерастворимых солей — карбоната кальция (из которого состоят раковины моллюсков). Отмирая, живые организмы образуют залежи полезных ископаемых: торф, древесину, каменный уголь, нефть. Известняк может надолго исключить углерод из круговорота веществ.

Подобно этому, долгое время нефть и уголь были почти полностью исключены из круговорота веществ, однако в настоящее время человек «вернул их в строй» вместе с выхлопными газами.

Азот находится в воздухе, которым мы дышим, и составляет 78% от его объема. Большая часть азота поступает в почву и воду благодаря деятельности микроорганизмов, бактерий и водорослей.

Широко известны клубеньковые бактерии на корнях бобовых растений, находящиеся с ними в симбиозе. Клубеньковые бактерии переводят атмосферный азот в нитраты, которые необходимы для роста и развития растения и могут быть усвоены им, в отличие от атмосферного азота (газа).

В листьях в процессе биосинтеза азот преобразуется в белки. Травоядные животные поедают растения, таким образом, белок включается в их состав. После смерти животных белки разлагаются сапротрофами, которые выделяют аммиак, нитраты. Часть нитратов усваивается растениями, а часть восстанавливается бактериями до атмосферного азота — цикл замыкается.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Оцените статью