Количество теплоты отданное водой при охлаждении

Содержание
  1. Лабораторная работа № 5. Сравнение количеств теплоты при смешивании воды разной температуры.
  2. Цель работы: Определить количество теплоты, отданное горячей водой и полученное холодной при теплообмене. Сравнить результаты.
  3. Количество теплоты отданное водой при охлаждении
  4. Расчет количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении
  5. Содержание
  6. Формула для расчета количества теплоты
  7. Расчет количества теплоты, затраченного на нагревание двух тел
  8. Расчет количества теплоты при смешивании жидкостей
  9. Расчет температуры при известной величине количества теплоты
  10. Расчёт количества теплоты при нагревании или охлаждении тела
  11. Урок 6. Физика 8 класс (ФГОС)
  12. В данный момент вы не можете посмотреть или раздать видеоурок ученикам
  13. Получите невероятные возможности
  14. Конспект урока «Расчёт количества теплоты при нагревании или охлаждении тела»

Лабораторная работа № 5. Сравнение количеств теплоты при смешивании воды разной температуры.

Цель работы: Определить количество теплоты, отданное горячей водой и полученное холодной при теплообмене. Сравнить результаты.

Мы знаем, что внутреннюю энергию тела можно изменить не только за счет работы, но и за счет нагревания тела. При этом процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом. Изменение внутренней энергии при теплообмене называют полученной или

отданной теплотой. Мы знаем также, что количество теплоты, необходимое для нагревания тела (или выделяемое им при охлаждении), зависит от рода вещества, из которого оно состоит, от массы этого тела и от изменения его температуры:

Измерить количество переданной теплоты можно в калориметрах. Это устройство мы будем использовать в этой работе.

Калориметр состоит из двух сосудов: внутреннего и внешнего. Внешний сосуд должен предохранять внутренний от потери тепла за счет теплообмена с окружающей средой. Сверху оба сосуда закрываются крышкой с установленным на ней термометром.

Читайте также:  Не уходит вода через сливной трап

Если в калориметр налить воды массой m1 при температуре а затем еще добавить воды массой m2 при температуре t2 , то в сосуде начнется теплообмен, а спустя некоторое время установится состояние теплового равновесия. При этом обе части воды будут иметь одну и ту же температуру t, и количество теплоты, отданное горячей водой, равно количеству теплоты, полученной холодной водой. Последнее утверждение составляет смысл уравнения теплового баланса:

Пример выполнения работы:

Количество теплоты, отданное горячей водой:

Количество теплоты, полученное холодной водой:

Количество теплоты, полученное холодной водой, приблизительно равно количеству теплоты, отданному горячей водой.

Точность приближения зависит от потерь теплоты в окружающую среду.

Решебник по физике за 7 класс (С.В Громов, Н.А. Родина, 2000 год),
задача №5
к главе «Лабораторные работы».

Источник

Количество теплоты отданное водой при охлаждении

При изготовлении льда в морозильной камере домашнего холодильника потребовалось 8 мин для того, чтобы охладить воду от 4 °С до 0 °С. Удельная теплоёмкость воды cв = 4200 Дж/(кг · °C), удельная теплоёмкость льда cл = 2100 Дж/(кг · °C), удельная теплота плавления льда λ = 330 кДж/кг.

1) Какое количество теплоты отдала вода при охлаждении до 0 °С, если её масса 100 г?

2) Сколько времени потребуется для превращения этой воды в лёд, если мощность холодильника не меняется? Ответ выразить в минутах и округлить до целого числа.

3) Для охлаждения лимонада на празднике Пете потребуется 400 г льда. За какое время до прихода гостей он должен поставить в холодильник воду при температуре 4 °С, чтобы она успела замёрзнуть?

Напишите полное решение этой задачи.

1) Количество теплоты, отданное водой при охлаждении до 0 °C, равно Дж.

2) Для того, чтобы данная порция воды замёрзла, она должна отдать холодильнику количество теплоты Так как мощность холодильника не меняется, то

минут.

3) Количество теплоты, которое вода массой M = 400 г должна отдать холодильнику, чтобы охладиться до 0 °С и замёрзнуть, равно

Оно пропорционально массе воды. Так как мощность холодильника постоянна, то

Ответ: 1) 1680 Дж; 2) 157 минут; 3) 660 минут.

Критерии оценивания выполнения задания Баллы
Приведено полное решение, включающее следующие элементы:

I) записаны положения теории, физические законы, закономерности, формулы и т. п., применение которых необходимо для решения задачи выбранным способом (уравнение теплового баланса, выражения для количеств теплоты при нагревании/охлаждении; выражение для мощности);

II) проведены нужные рассуждения, верно осуществлена работа с графиками, схемами, таблицами (при необходимости), сделаны необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями; часть промежуточных вычислений может быть проведена «в уме»; задача может решаться как в общем виде, так и путём проведения вычислений непосредственно с заданными в условии численными значениями);

Источник

Расчет количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении

Содержание

Количество теплоты – еще один изученный нами вид энергии. Эту энергию тело получает или отдает при теплопередаче. Мы установили, что количество теплоты, необходимое для нагревания тела, зависит от массы тела, разности температур и рода вещества. Нам известен физический смысл удельной теплоемкости и некоторые ее табличные значения для разных веществ. В этом уроке мы перейдем к численному расчету количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении.

Зачем это нужно? На самом деле, на практике очень часто используют подобные расчеты.

При строительстве зданий и проектировании систем отопления важно знать, какое количество теплоты необходимо отдавать для полного обогрева всех помещений. С другой стороны, также необходима информация о том, какое количество теплоты будет уходить через окна, стены и двери.

Формула для расчета количества теплоты

Допустим, на нужно узнать, какое количество теплоты получила при нагревании железная деталь. Масса детали $3 \space кг$. Деталь нагрелась от $20 \degree C$ до $300 \degree C$.

Возьмем значение теплоемкости железа из таблицы – $460 \frac<Дж><кг \cdot \degree C>$. Объясним смысл этой величины: на нагревание куска железа массой $1 \space кг$ на $1 \degree C$ необходимо затратить количество теплоты, равное $460 \space Дж$.

  • Масса детали у нас в 3 раза больше, значит, на ее нагрев потребуется в 3 раза большее количество теплоты – $1380 \space Дж$
  • Температура изменилась не на $1 \degree C$, а на $280 \degree C$
  • Значит, необходимо в 280 раз большее количество теплоты: $1380 \space Дж \cdot 280 = 386 400 \space Дж$

Тогда, формула для расчета количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении примет вид:

где $Q$ – количество теплоты,
$c$ – удельная теплоемкость вещества, из которого состоит тело,
$m$ – масса тела,
$t_1$ – начальная температура тела,
$t_2$ – конечная температура тела.

Чтобы рассчитать количество теплоты, которое необходимо затратить для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость умножить на массу тела и на разность конечной и начальной температур.

Рассмотрим подробнее особенности расчета количества теплоты на примерах решения задач.

Расчет количества теплоты, затраченного на нагревание двух тел

В железный котелок массой $4 \space кг$ налили воду массой $10 \space кг$ (рисунок 1). Их температура $25 \degree C$. Какое количество теплоты нужно затратить, чтобы нагреть котелок и воду до температуры $100 \degree C$?

Обратите внимание, что нагреваться будут сразу два тела: и котелок, и вода в нем. Между постоянно будет происходить теплообмен. Поэтому их температуры мы можем считать одинаковыми.

Отметим, что массы котелка и воды различные. Также они имеют различные теплоемкости. Значит, полученные ими количества теплоты будет различными.

Теперь мы можем записать условие задачи и решить ее.

Дано:
$m_1 = 4 \space кг$
$c_1 = 460 \frac<Дж><кг \cdot \degree C>$
$m_2 = 10 \space кг$
$c_2 = 4200 \frac<Дж><кг \cdot \degree C>$
$t_1 = 25 \degree C$
$t_2 = 100 \degree C$

Q-?

Посмотреть решение и ответ

Решение:

Для расчета полученного количества теплоты используем формулу $Q = cm(t_2 – t_1)$.

Запишем эту формулу для количества теплоты, полученного котелком:
$Q_1 = c_1m_1(t_2 – t_1)$.

Рассчитаем это количество теплоты:
$Q_1 = 460 \frac<Дж> <кг \cdot \degree C>\cdot 4 \space кг \cdot (100 \degree C – 25 \degree C) = 1840 \frac<Дж> <\degree C>\cdot 75 \degree C = 138 000 \space Дж = 138 \space кДж$.

Количество теплоты, полученное водой при нагревании будет равно:
$Q_2 = c_2m_2(t_2 – t_1)$.

Подставим численные значения и рассчитаем:
$Q_2 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 10 \space кг \cdot (100 \degree C – 25 \degree C) = 42000 \frac<Дж> <\degree C>\cdot 75 \degree C = 3 150 000 \space Дж = 3150 \space кДж$.

Общее количество теплоты, затраченное на нагревание котелка и воды:
$Q = Q_1 +Q_2$,
$Q = 138 \space кДж + 3150 \space кДж = 3288 \space кДж$.

Ответ: $Q = 3288 \space кДж$.

Расчет количества теплоты при смешивании жидкостей

Горячую воду разбавили холодной и получили температуру смеси $30 \degree C$. Горячей воды с температурой $100 \degree C$ при этом было $0.3 \space кг$. Холодная вода имела массу $1.4 \space кг$ и температуру $15 \degree C$. Рассчитайте, какое количество теплоты было отдано горячей водой при остывании и получила холодная вода при нагревании. Сравните эти количества теплоты.

Дано:
$c_1 = c_2 = c = 4200 \frac<Дж><кг \cdot \degree C>$
$m_1 = 0.3 \space кг$
$m_2 = 1.4 \space кг$
$t_1 = 100 \degree C$
$t_2 = 15 \degree C$
$t = 30 \degree C$

$Q_1 – ?$
$Q_2 – ?$

Посмотреть решение и ответ

Решение:

Запишем формулу для расчета количества теплоты, отданного горячей водой при остывании от $100 \degree C$ до $30 \degree C$:
$Q_1 = cm_1(t_1 – t)$.

Рассчитаем эту величину:
$Q_1 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 0.3 \space кг \cdot (100 \degree C – 30 \degree C) = 1260 \frac<Дж> <\degree C>\cdot 70 \degree C = 88 200 \space Дж = 88.2 \space кДж$.

Запишем формулу для расчета количества теплоты, полученного холодной водой при нагревании от $15 \degree C$ до $30 \degree C$:
$Q_2 = cm_2(t – t_2)$.

Рассчитаем эту величину:
$Q_1 = 4200 \frac<Дж> <кг \cdot \degree C>\cdot 1.4 \space кг \cdot (30 \degree C – 15 \degree C) = 5880 \frac<Дж> <\degree C>\cdot 15 \degree C = 88 200 \space Дж = 88.2 \space кДж$.

$Q_1 = Q_2 = 88.2 \space кДж$.

Ответ: $Q_1 = Q_2 = 88.2 \space кДж$.

В ходе решения этой задачи мы увидели, что количество теплоты, отданное горячей водой, и количество теплоты, полученное холодной водой, равны. Другие опыты дают схожие результаты.

если между телами происходит теплоообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

На практике часто получается так, что отданная горячей водой энергия больше, чем полученная холодной. На самом деле, горячая вода при охлаждении передает какую-то часть своей внутренней энергии воздуху и сосуду, в котором происходит смешивание.

Есть 2 способа учесть этот фактор:

  • Если мы максимально сократим потери энергии, то добьемся приблизительного равенства отданной и полученной энергий
  • Если рассчитать и учесть потери энергии, то можно получить точное равенство

Расчет температуры при известной величине количества теплоты

При нагревании куска меди было затрачено $22 \space кДж$. Масса этого куска составляет $300 \space г$. Начальная температура была равна $20 \degree C$. До какой температуры нагрели кусок меди?

Дано:
$m = 300 \space г$
$t_1 = 20 \degree C$
$c = 400 \frac<Дж><кг \cdot \degree C>$
$Q = 22 \space кДж$

$22 000 \space Дж$

$t_2 – ?$

Посмотреть решение и ответ

Решение:

Запишем формулу для расчета количества теплоты:
$Q = cm(t_2 – t_1)$.

Постепенно выразим из этой формулы искомую температуру $t_2$:
$t_2 – t_1 = \frac$,
$t_2 = \frac + t_1$.

Рассчитаем $t_2$:
$t_2 = \frac<22 000 \space Дж><400 \frac<Дж> <кг \cdot \degree C>\cdot 0.3 \space кг> + 20 \degree C \approx 183 \degree C + 20 \degree C \approx 203 \degree C$.

Ответ: $t_2 \approx 203 \degree C$.

Источник

Расчёт количества теплоты при нагревании или охлаждении тела

Урок 6. Физика 8 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Расчёт количества теплоты при нагревании или охлаждении тела»

На прошлых уроках мы с вами познакомились с понятием «внутренняя энергия тела» и узнали, что изменить её можно двумя способами: либо путём совершения механической работы, либо теплопередачей.

Также мы с вами выяснили, что мерой изменения внутренней энергии тела при теплопередаче является количество теплоты. Давайте вспомним, что количество теплоты — это скалярная физическая величина, равная изменению внутренней энергии тела в процессе теплопередачи без совершения механической работы.

А ещё мы получили уравнение, по которому можно рассчитать количество теплоты, которое необходимо подвести к телу для его нагревания, или выделяемое телом, при его охлаждении:

Из формулы видно, что количество теплоты зависит от массы тела, разности температур в конечном и начальном состояниях, а также от удельной теплоёмкости вещества, из которого это тело изготовлено.

Чтобы вспомнить, же что же такое теплоёмкость, рассмотрим решение следующей задачи.

Задача 1. В сосуд с горячей водой опустили алюминиевую и латунную болванки одинаковой массы и температуры. Одинаковым ли будет изменение их температур?

В жизненных ситуациях довольно часто возникает необходимость в тепловых расчётах. Например, при строительстве жилых домов необходимо знать, какое количество теплоты должна отдавать зданию система отопления. Или нужно определить температуру после смешивания горячей и холодной воды. И на этом уроке мы разберёмся, как проводятся такие расчёты.

Последовательность действий при решении задач на расчёт теплообменных процессов:

Задача 2. Для купания ребёнка температура воды в ванночке не должна превышать 38 о С. Для этого родители смешали 40 кг холодной воды при температуре 12 о С и 20 кг горячей воды при температуре 90 о С. Если потерями тепла можно пренебречь, то какое количество теплоты получили холодная вода при нагревании и отдала горячая вода при охлаждении?

Мы получили, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному водой холодной. И это не случайно. Вспомните: если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается ровно на столько, на сколько уменьшается внутренняя энергия остывающих тел.

Конечно в реальных условиях количество теплоты, отданное горячей водой, всегда будет больше чем-то количество теплоты, которое получит холодная вода. Это объясняется тем, что часть энергии идёт на нагревание сосуда, в котором находилась вода, а ещё часть теряется на нагревание окружающего воздуха.

Теперь мы можем внести дополнительный пункт в нашу последовательность действий при решении задач — пункт о необходимости составления уравнения теплового баланса.

Количество теплоты, отданное или полученное телом, можно измерить с помощью прибора, который называется калориметр.

Школьный калориметр состоит из двух стаканов, вставленных один в другой. Воздушная прослойка и подставка между ними уменьшают теплопередачу между содержимым внутреннего стакана и окружающим воздухом.

Задача 3. Калориметр содержит 3 л воды при температуре 80 о С. В воду опускают нагретый на плитке кирпич массой 1,5 кг. Определите начальную температуру кирпича, если в результате теплообмена температура воды повысилась до 9 о С. Теплопередачей калориметру и окружающему воздуху можно пренебречь.

Обратите внимание на то, что в некоторых задачах теплоёмкостью калориметра пренебрегать нельзя. В этом случае необходимо учитывать, что и вода, и калориметр будут нагреваться или охлаждаться вместе. А их температуры можно считать одинаковыми.

Источник

Оцените статью