Краевой угол смачивания вода стекло

Краевой угол смачивания вода стекло

Сма́чивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:

  • Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)
  • Контактное (состоит из трёх фаз — твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами ) смачиваемого тела ( адгезия ) и силами взаимного сцепления молекул жидкости ( когезия ).

Если жидкость контактирует с твёрдым телом, то существуют две возможности:

  1. молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведёт себя ртуть на стекле, вода на парафине или «жирной» поверхности. В этом случае говорят, что жидкость не смачивает поверхность;
  2. молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведёт себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность.

Если опустить стеклянную палочку в ртуть и затем вынуть ее, то ртути на ней не окажется. Если же эту палочку опустить в воду, то после вытаскивания на ее конце останется капля воды. Этот опыт показывает, что молекулы ртути притягиваются друг к другу сильнее, чем к молекулам стек­ ла, а молекулы воды притягива­ ются друг к другу слабее, чем к молекулам стекла.

Читайте также:  Для чего итальянцы разбавляют вино водой

Если молекулы жидкости при­ тягиваются друг к другу слабее, чем к молекулам твердого вещества, то жидкость называют сма чивающей это вещество. Например, вода смачивает чистое стекло и не смачивает парафин. Если молекулы жидкости притя­гиваются друг к другу сильнее, чем к молекулам твердого вещества, то жидкость называют не смачивающей это вещество. Ртуть не смачивает стекло, однако она смачивает чистые медь и цинк.

Расположим горизонтально плоскую пластинку из какого-либо твердого вещества и капнем на нее исследуемую жидкость. Тогда капля расположится либо так, как показано на рис.5(а), либо так, как показано на рис. 5(б).

В первом случае жидкость сма чивает твердое вещество, а во втором — нет. Отмеченный на рис.5 угол θ называют краевым углом. Краевой угол образуется плоской поверхностью твердого тела и плоскостью, касательной к свободной поверхности жидкости , где граничат твердое тело, жидкость и газ; внутри крае­ вого угла всегда находится жидкость. Для смачивающих жидкостей краевой угол острый, а для не смачивающих — тупой. Чтобы дей­ ствие силы тяжести не искажало краевой угол, каплю надо брать как можно меньше.

Поскольку краевой угол θ сохраняется при вертикальном поло­жении твердой поверхности, то смачивающая жидкость у краев сосуда, в который она налита, при­поднимается , а не смачивающая жидкость опускается

Источник

Краевой угол смачивания. Технология измерения контактного угла

Угол контакта

Угол контакта ( θ ) – это угол, который образуется между каплей жидкости и поверхностью твердой или иной фазы.

Равновесие сил, воздействующих на угол контакта (θ)

Равновесное уравнение: γsv = γsl + γlv cosθ

γlv –равновесное состояние между жидкостью и газовой фазой;

γsv –равновесное состояние между твердой фазой и газовой фазы;

γsl – равновесное состояние между твердой и жидкой фазами.

Статический угол контакта

Статический угол контакта измеряется в том случае, когда капля жидкости находится в неподвижном состоянии на твердой поверхности.

Динамический угол контакта

Динамический угол контакта измеряется в том случае, когда граница раздела фаз движется и происходит изменение статического угла контакта во времени. Динамический угол контакта бывает двух типов – наступающий и отступающий. Измерение может быть произведено двумя методами – метод изменения объема капли и метод наклона подставки.

Наступающий угол смачивания θa : наибольший угол контакта достигается путем увеличения межфазной поверхности при добавлении дополнительного количества жидкости.

Отступающий угол смачивания θr: возникает при уменьшении объема жидкой капли.

Угол гистерезиса θH: является разницей между наступающим и отступающим углами θH = θa — θr

Наклонный метод: совмещает как наступающий, так и отступающий угол контакта в одной капле. Капля помещается на рабочий столик, который постепенно начинает наклоняться. Наступающий угол измеряется в нижней части капли (на картинке слева), когда она начинает двигаться. Отступающий угол контакта измеряется в верхней части капли (на картинке справа).

Методы измерения и расчета угла смачивания лежачей капли

Существует 4 метода измерения и расчета угла смачивания лежачей капли:

  1. 1. Полуугловой метод
  2. 2. Круговой метод
  3. 3. Эллиптический метод
  4. 4. Тангенциальный метод

Полуугловой метод

Если размер капли мал, то ее можно представить как часть сферы и профиль капли в двух измерениях, т.е. в виде круга.

Здесь h – высота, а r – половина ширины базовой линии. Таким образом, θ1 = tan -1 h/r. И в случае простой геометрии угол смачивания можно выразить следующим образом θ = 2θ1. (см. рисунок). Рассчитав h и r при помощи анализа изображения, далее можно рассчитать угол контакта θ.

Этот метод подходит для капель симметричной формы и меньшего размера. Для капель большего размера и тяжести можно снизить высоту вершины.

Круговой метод

Стадии расчета угла контакта круговым методом:

  • Захват и сохранение изображения с упавшей каплей.
  • Распознавание базовой линии
  • Выберите 3 или более точек на краю криволинейного профиля капли.
  • По кривой с данными точками можно найти уравнение окружности.
  • Угол смачивания представляет собой угол между касательной и базовой линией.

Данный метод является наиболее распространенным при вычислении угла контакта.

Эллиптический метод

В эллиптическом методе применяется построение кривой профиля капли. В этом отношении данный метод похож на круговой.

  • Захват и сохранение изображения с упавшей каплей.
  • Распознавание базовой линии
  • Выделение 6 базовых точек на кривой
  • Вычисляется уравнение эллипса
  • Угол смачивания представляет собой угол между касательной и базовой линией

По сравнению с другими данный метод является достаточно сложным. Поэтому он используется для вычисления угла смачивания по методу лежачей капли в диапазоне 0 — 130°С.

Тангенциальный метод

Форма капли представляется как часть контура предполагаемой окружности. В данном методе определяется центр предполагаемой окружности, и угол контакта представляет собой угол между касательной и окружностью.

Три точки L1, L2 и L3 образуются на представляемой окружности. Левый гол контакта – угол между касательной m и базовой линией l. Правый угол контакта может быть измерен таким же образом при помощи точек R1, R2, и R3.

Измерение краевого угла

1. Подготовка образца

Образцы должны быть подготовлены заранее, и их поверхности должны быть надлежащим образом очищены непосредственно перед измерениями угла контакта. Образец следует размещать строго в горизонтальном положении. Необходимо тщательно очистить иглу шприца. Это важно потому, что жидкость, выходящая из иглы, может немного подниматься вверх по наружной поверхности иглы в ходе эксперимента. Желательно натереть кончик иглы водоотталкивающим составом.

2. Обеспечение условий влажности / уровни пара

Образец должен быть помещен в измерительную ячейку, заполненную рабочей жидкостью. Эти операции проводятся за несколько минут до измерения угла контакта. На данном этапе необходимо закрепить шприц, заполненный рабочей жидкостью, и выровнять иглу по отношению к поверхности образца.

3. Измерение статического угла контакта

После выхода жидкости из иглы должна появиться капля. Диаметр капли должен быть больше диаметра иглы в 3-4 раза. Подача жидкости должна осуществляться до того момента, пока целая капля не выйдет из иглы. Далее игла должна быть удалена. Нужно выждать 1-3 минуты для стабилизации капли, после чего можно померить статический угол контакта.

4. Измерение наступающего угла контакта

Игла должна быть перемещена назад к капле и необходимо добавлять жидкость до того момента, пока не растечется база. Далее игла снимается и измеряется наступающий угол контакта. Эта операция повторяется 3-5 раз, после чего берется среднее значение.

5. Измерение убывающего угла контакта

Игла погружается в каплю для того, чтобы начать втягивать жидкость обратно, уменьшив тем самым размер капли. Данную операцию следует проводить аккуратно, не меняя, диаметра капли. После аккуратного удаления иглы можно измерить убывающий угол контакта. Измерение следует провести 3-5 раз, усреднив в конечном итоге результат.

6. Воспроизведение результатов

Измерение угла контакта необходимо повторить либо на 3 – 5 точках одного и того же образца, либо на других таких же образцах, прошедших те же стадии очистки.

Источник

Краевой угол смачивания вода стекло

Выполнила: Тюрина Анастасия.

Цель: узнать о явлениях смачивания и несмачивания, разобраться в причинах возникновения данных явлений.
Задачи:
— раскрыть основные понятия;
-выявить причины явлений смачивания и несмачивания;
-рассмотреть опыты, подтверждающие существование данных явлений;
-рассказать о существовании данных явлений в природе .

Смачивание и несмачивание (теория)

Если жидкость контактирует с твёрдым телом, то существуют две возможности:
1)молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведёт себя ртуть на стекле, вода на парафине или «жирной» поверхности. В этом случае говорят, что жидкость не смачивает поверхность;
2)молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведёт себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность.
Несмачивание — физическое явление отсутствия смачивания жидкостью поверхности материала.
Смачивание — физическое взаимодействие жидкости с поверхностью твёрдого тела или другой жидкости.
Смачивание бывает двух видов
-Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью )
-Контактное (состоит из 3х фаз — твердая, жидкая, газообразная)

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания)- это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. Мерой смачивания служит краевой угол θ — это угол между плоскостью, касательной к поверхности жидкости, и стенкой (плоскостью поверхности твердого тела). Внутри краевого угла всегда находится жидкость. Для смачивающей жидкости θ — острый, для несмачивающей θ — тупой. При полном смачивании θ = 0, при полном несмачивании θ = 180°.

Опыты, подтверждающие существование явлений смачивания и несмачивания

Положите рядом стеариновую и стеклянную пластинки. Капните из пипетки на каждую из них по маленькой капле воды. На стеариновой пластинке получится полушарие диаметром примерно 3 миллиметра, а на стеклянной пластинке капля растечется. Теперь возьмите стеклянную пластинку и наклоните ее. Капля уже и так растеклась, а теперь она потечет дальше. Молекулы воды охотнее притягиваются к стеклу, чем друг к другу. Другая же капля будет кататься по стеарину при наклонах пластинки в разные стороны. Удержаться на стеарине вода не может, она его не смачивает, молекулы воды притягиваются друг к другу сильнее, чем к молекулам стеарина.

Несмачивание в природе.
Роль поверхностных явлений в природе разнообразна. Например, поверхностная плёнка воды является для многих организмов опорой при движении. Такая форма движения встречается у мелких насекомых и паукообразных. Наиболее известны водомерки, опирающиеся на воду только конечными члениками широко расставленных лапок. Лапка, покрытая воскообразным налётом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней.

Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз, что объясняет их непромокаемость. Толстый слой воздуха, заключённый между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести, действуя подобно спасательному поясу.

Воскообразный налёт на листьях препятствует заливанию так называемых устьиц, которое могло бы привести к нарушению правильного дыхания растений. Наличием того же воскового налёта объясняется водонепроницаемость соломенной кровли, стога сена и т.д.

Заключение
Таким образом, явления смачивания и несмачивания имеют важное значение в природе, промышленной технологии, быту. Хорошее смачивание необходимо при крашении и стирке, обработке фотографических материалов, нанесении лакокрасочных покрытий, пропитке волокнистых материалов, склеивании, пайке, амальгамировании и т. д. Снизить смачивание до минимума стремятся при получении гидрофобных покрытий, гидроизоляционных материалов и др. В некоторых случаях, например при флотации и эмульгировании твёрдыми эмульгаторами, требуется сохранение краевых углов в определённом интервале значений. С. играет первостепенную роль в металлургических процессах, при диспергировании твёрдых тел в жидкой среде. Оно влияет на распространение грунтовых вод, увлажнение почв, разнообразные биологические и другие природные процессы.

Источник

Оцените статью