- Научные исследования структурированной воды
- Процесс структурообразования воды.
- Броуновское движение и разрывы водородных связей
- Клатрат
- Вода под квантово-силовым микроскопом
- Структурированная вода
- Кластеры воды имеют стабильную структуру подобно клеточной воде
- Изменения структуры воды в природе
- Роль структурированной воды в организме человека
- Чем полезна структурированная вода
- Как обычно структурируют воду в домашних условиях
Научные исследования структурированной воды
Поскольку достоверная научная информация о физических свойствах и природе структурированной воды до недавнего времени полностью отсутствовала, было предпринято несколько аналитических и экспериментальных лабораторных работ в этой области. Первые же опыты по измерению физических свойств простой воды, взятой из под крана, и физических свойств структурированной воды принесли неожиданные результаты. В частности обнаружилось, что обычная вода, состоящая из одной – четырёх молекул воды и структурированная вода, с образовавшимися кластерами, состоящими из девятьсот двенадцати молекул воды, обладают совершенно одинаковыми физическими свойствами. Однако такие результаты противоречат существующим на сегодняшний день и хорошо изученным физическим законам поведения воды. Собственно именно эти результаты лабораторных работ и стали причиной появления данного обзора по свойствам и природе структурированной воды.
Процесс структурообразования воды.
В то время как процесс информационного структурообразования воды на сегодняшний день изучен очень плохо, процесс естественной агрегации её молекул изучен уже давно и довольно основательно. В частности установлены соотношения взаимодействия молекул воды и условия, при которых они возникают. Например, давно известно, что в нормальных условиях (при температуре до +10 — +30 градусов Цельсия), молекулы воды, благодаря своим электростатическим водородным связям объединяются в агрегаты типа (Н2О)n, (Рисунок 1). При этом среднее значение n, при температуре воды до +20 градусов Цельсия, может варьироваться от одного до четырёх. Такое значение коэффициента n означает, что каждая молекула воды может быть связана от одной до четырёх соседних молекул.
Рисунок 1. Структура молекулы воды.
Рисунок 2. Образование кристаллов льда воды.
Сторонники теории об информационно структурированной воде частенько необоснованно делают акцент на некоторые аномальные и загадочные, сугубо с их точки зрения, свойства этой воды. В частности, в качестве примера таких свойств приводится различие физических свойств простой воды Н2O и её молекулярного двойника – сероводорода Н2S (рисунок 4). Аномальность и загадочность заключается в том, что при почти идентичном молекулярном строении, сероводород, в нормальных условиях, находится в газообразном состоянии, в то время как вода – в жидком. Именно это различие нормальных состояний между водой и сероводородом вызывает некое недоумение в псевдонаучных кругах, и позволять наделять воду некими особыми и загадочными свойствами. На самом деле такое различие состояний воды и сероводорода вполне естественно и вызвано тем, что сероводород, по сравнению с водой, имеет сравнительно более низкую степень естественной агрегации. Такое свойство сероводорода приводит к тому, что температура его кипения составляет -60 градусов Цельсия, в то время как температура кипения воды составляет +100 градусов Цельсия. Поэтому в нормальном для нас состоянии, то есть при температуре от +10 градусов Цельсия до + 30 градусов Цельсия, сероводород становится газообразным, в то время как вода остаётся в жидком состоянии.
Известно, что диэлектрические свойства любого вещества напрямую зависят от размеров элементарных частиц этого вещества (например, от размера молекул этого вещества) и от степени их ориентированности в электрическом поле. Вода, состоящая из одной – четырёх молекул, имеет диэлектрическую проницаемость равную восемьдесят одной единице, а тангенс диэлектрических потерь такой воды обычно находится в пределе от одной десятой до пяти десятых единиц. Согласно формуле Ланжевена – Дебая, которая связывает диэлектрическую проницаемость полярных диэлектриков с дипольным моментом составляющих его молекул, диэлектрические свойства воды, связанные с временем релаксации молекулы воды, пропорциональны третьей степени радиуса её частиц.
Рисунок 3а. Формула Дебая
Где М — молекулярная масса, r — плотность вещества, Т — абсолютная температура, a0 — электронная поляризуемость молекул, Е – электрическое поле, р2/3kT – ориентационная поляризуемость молекул вещества.
Броуновское движение и разрывы водородных связей
Одновременно с процессом агрегатного структурирования воды и разрыва водородных связей молекул воды (разрыв водородных связей происходит при энергии флуктуаций Броуновского движения равной 25 кДж/моль), в ней происходит разрушение образовавшихся ранее агрегатов. Именно поэтому в обычной воде, взятой из-под крана или из речки, агрегатировано не более половины от общего числа её молекул. При значительном снижении температуры воды, энергия флуктуаций Броуновского движения снижается, уменьшаются и разрывы водородных связей между её молекулами. Следствием снижения температуры энергии Броуновского движения и разрывов водородных связей является возрастание агрегации и образование сплошных кристаллов льда, и вода переходит в твёрдое состояние (Рисунок 2).
Перечисленные выше процессы хорошо изучены и протекают в строгом соответствии с известными физическими законами. Каких либо дополнительных отклонений в этих процессах, до сегодняшнего дня, не было обнаружено. Поэтому заявления сторонников информационно структурированной воды о содержании в такой воде крупных кластеров с содержанием девятьсот двенадцати молекул, вызывают справедливые сомнения, поскольку столь крупные образования в воде были бы моментально обнаружены учёными при множественных и многократных опытах с водой. Такие утверждения тем более не вызывают никакого доверия, поскольку высказываются голословно, без всякого научного доказательства.
Рисунок 3. Молекула углеводорода, заключенная в клатрате воды
Клатрат
Кроме множества других видов структурированной воды, существует ещё один из видов такой воды – это клатрат (Рисунок 3). Иногда сторонники энергоинформационной структурированной воды клатратом называют многомолекулярные информационные структуры. Но такое представление о клатрате ошибочно, поскольку он не имеет ни какого отношения к кластерам, описанным выше, а является довольно специфичным молекулярным образованием, принципиально отличным от всех других видов образований в структурированной воде.
Собственно клатрат – это специфичное соединение, которое образовано молекулами воды и молекулами другого вещества. При этом молекулы воды обволакивают (гидратируют) моно слоем молекулы другого вещества без образования валентных связей. Вещество как бы попадает вовнутрь шарика, оболочка которого его обволакивает и состоит из молекул воды. Такие клатерные соединения вода способна образовывать со множеством углеводородных соединений. Одна из таких разновидностей клатерного соединения представлена на рисунке №3. На рисунке показана молекула углеводорода, которая окружена моно слоем молекул воды. Многие известные водные эмульсии представляют собой не что иное, как гидратные клатеры. Вода, кроме углеводородных соединений, способна образовывать клатерные соединения и с некоторыми благородными газами, например, такими как гидраты Xe ˙ 6H2O, Kr ˙ 6H2O, Ar ˙ 6H2O.
Рисунок 4. Молекула воды и сероводорода.
Вода под квантово-силовым микроскопом
Следует отметить ещё один любопытный факт. Совсем недавно группа заинтересованных ученых провела тщательное экспериментальное исследование воды и её молекулярной структуры при помощи квантового — силового микроскопа. Такой микроскоп ещё называют «туннельным». Суть этого уникального эксперимента заключался в том, чтобы зарегистрировать энергию столкновения связанных агрегатов воды со специальным датчиком – щупом, который при помощи специального устройства перемещался под водой (Рисунок 5-а). По величине выделенной энергии, при помощи компьютера, определялись размеры и структура частиц, с которыми столкнулся датчик – щуп.
Рисунок 5. Структура воды под атомным силовым микроскопом.
Практические исследования воды при помощи туннельного микроскопа подтвердили теорию о том, что при нормальных температурных условиях в составе воды отсутствуют укрупнённые молекулярные комплексы. Но, те же исследования выявили ряд интересных фактов, в частности тот факт, что при нормальных температурных режимах у стенок сосуда, в котором содержится вода, образуются линейные молекулярные цепи молекул воды, которые располагаются перпендикулярно стенкам сосуда и содержат в себе до тридцати молекул (Рисунок 5-б). Наличие таких длинных молекулярных цепей объясняется тем, что на стенках сосуда в обычных условиях образуются статические электронные заряды, которые и принуждают молекулы воды выстраиваться в такие длинные молекулярные цепочки. При этом, чем больше статический заряд на стенках сосуда, тем больше образуется цепочка из молекул воды.
Отсутствие таких длинных молекулярных цепочек в самой толще воды объясняется тем, что в ней присутствует разрушающий такие цепочки фактор Броуновских флуктуаций. Ближе к стенкам сосуда, Броуновские флуктуации компенсируются наличием на стенках статического напряжения. Поэтому и происходит выстраивание молекул воды в такие длинные цепи. Больше никаких интересных фактов исследование воды при помощи туннельного микроскопа не принесло. Так же не было обнаружено никаких более – менее крупных агрегатных образований, не смотря на упорные утверждения сторонников структурированной воды. В качестве доказательства, что в воде всё таки могут присутствовать такие образования, сторонники структурированной воды приводят снимок, сделанный ими однажды в ходе исследования структурированной воды при помощи растового микроскопа (Рисунок 7).
Рисунок 7. Вид пленки воды, сделанный сторонниками структурированной воды, под растровым электронным микроскопом.
Статья претендует на премию в миллион долларов. За доказательство существования эффекта «памяти воды» полагался 1 миллион долларов США. Вроде, ещё ни кто не получал? Или я что то пропустил?
Добрый день!
Проводились ли опыты по воздействию на воду слабыми полями в том числе торсионного уровня. Если да, то как менялись физические свойства воды?
Источник
Структурированная вода
Структурированная вода несет в себе биологическую активность за счёт особой молекулярной структуры. Чем стабильнее сформирована молекулярная структура, тем полезнее и эффективней будет её потребление.
Молекула воды состоит из двух атомов водорода и одного атома кислорода, которые соединены между собой ковалентной связью. Молекула воды имеет полярную химическую связь т.к. кислород притягивает к себе отрицательно заряженные электроны, а атомы водорода — положительно заряженные электроны. В результате молекула имеет два полюса, что во многом определяет ее необычные свойства.
Молекулы воды способны соединяться между собой благодаря положительно заряженным атомам водорода, которые притягиваются к отрицательно заряженному кислороду, такая молекулярная связь называется водородная.
Водородная связь образует как случайные соединения(ассоциаты), не имеющие упорядоченной структуры, так и кластеры, в которых ассоциаты имеют определенную структуру. По прочности водородная связь примерно в 15 — 20 раз слабее ковалентной связи. Поэтому ассоциаты молекул воды не стабильны и коротко живущие, они постоянно разделяются и образуютновые соединения. Считается, что из-за таких свойств, вода является самым универсальным растворителем.
Интересным фактом является то, что отдельные молекулы воды, не связанные в ассоциаты, присутствуют в самой структуре воды лишь в виде 1%. В основном вода – это совокупность беспорядочных ассоциатов и кластеров «водяных кристаллов», где количество связанных молекул может достигать сотен и даже тысяч единиц.
Кластеры воды имеют стабильную структуру подобно клеточной воде
Под кластером обычно понимают группу атомов или молекул, объединенных физическим взаимодействием в единое целое, но сохраняющих внутри него индивидуальное поведение. Их жизнь быстротечна, и потому они с трудом поддаются изучению. Уникальность воды заключается в том, что она представляет собой сложную и динамически меняющуюся структуру кластеров и ассоциатов.
Кластеры – это группы молекул, объединенные водородными связями, которые имеют стабильную структуру. Группируясь, молекулы воды создают различные пространственные и плоскостные структуры. Базовой структурой кластера считается группа из шести молекул, объединенных в кольцо. Такой тип структуры имеют лёд, снег, талая вода, и клеточная вода всех живых тканей.
К примеру, в обычной воде кластеры состоят из макромолекулярных групп, образованных из 15-17 молекул и более сотен молекул. Такая вода менее подвижна, плохо растворяет химические вещества, плохо проникает через мембрану клеток, что ухудшает клеточный метаболизм (обмен веществ) и приводит к дополнительным энергозатратам, т.к. каждый организм структурирует воду под себя.
Изменения структуры воды в природе
Вода самое аномальное из всех известных в природе веществ. Её структура легко может изменяться под внешним воздействием: при помощи давления, температуры, магнитного поля, электрического поля и т. д.
При изменении температуры структура воды меняет свое состояние: Пар, жидкость, лед.
Объяснение такого изменения в том, что молекулы воды совершают колебания с определенной частотой. При нагреве воды до 100 градусов, амплитуда колебания молекул становится такой силы, что притяжение молекул воды друг к другу становится не в состоянии удерживать их вместе, в результате структура кластера распадается. При охлаждении амплитуда колебаний уменьшается, и структура становится более прочной.
Газообразное состояние. При температуре выше +100°С вода преобразуется в газообразное состояние. В газообразном состоянии водородная связь между молекулами воды почти полностью отсутствует. На этом примере мы можем увидеть, как легко разрываются водородные связи между молекулами превращаясь в пар.
Жидкое состояние. При температуре от 0 до 100°С вода находиться в жидком состоянии. В жидком состоянии водородные связи –легко образующие, спонтанные, быстро разделяются и объединяются вновь с другими молекулами. Всё это приводит к неоднородности в структуре воды. Но так же есть и более устойчивые долгоживущие соединения — кластеры.
Согласно недавним научным исследованиям Японским институтом воды, в обычной питьевой воде находится случайных ассоциатов — 70% (деструктурированная вода) и кластеров — 30% (структурированная вода).
Твердое состояние. При температуре ниже 0 вода переходит в твердое состояние «Лед». В твердом состоянии водородные связи молекул воды образуют крепкую, непрерывную кристаллическую сетку, в которой каждая молекула имеет четырёх ближайших соседей, которые соединены между собой прямыми одинаковыми водородными связями в сетчатый каркас с пустотами в нем. Это объясняет почему плотность льда меньше плотности воды.
Самый наглядный пример структурированной воды — талая вода. Она образуется, когда происходит оттаивание льда при температуре 0 °С. При плавлении кристаллической решетки льда разрушается только 17% от общих водородных связей. Поэтому свойственна льду связь каждой молекулы воды с четырьмя соседними молекулами при оттаивании в значительной степени сохраняется, но при каждом повышении температуры, разрушение происходит активнее. А после кипячения воды ее структура разрушается.
Этим можно объяснить полезность воды из горных источников. Она зарождается у кромки таяния снега и льда, то имеет специфическую структуру, где связи между молекулами упорядочены, а молекулы объединены в кластеры.
Роль структурированной воды в организме человека
Человек состоит на большую часть из воды, поэтому вода является самым важным элементом в организме. Подробнее о клеточной воде и ее функциях.
Вода в организме человека также структурирована. Она похожа на структуру кристаллической решетки льда, но по-своему уникальна. Обычная вода состоит из макромолекулярных групп — кластеров, образованных из 15-17 молекул и более. В организме клеточная и межклеточная вода имеет кластеры из 5-7 молекул воды, ее называют низкомолекулярной водой.
Благодаря такой структуре, вода обладает хорошей проникающей способностью в клетки, быстро циркулирует и способствует нормальному протеканию всех биохимических реакций, что существенно повышает эффективность и синхронность работы всех систем организма.
При потреблении обычных водопроводных или газированных вод либо напитков, где структура воды всегда разрушена и состоит из макромолекулярных кластеров, организм структурирует воду по типу своей внутренней структуры, затрачивая при этом клеточную энергию. Именно затрата жизненной энергии на структурирование воды является главной причиной «синдрома хронической усталости». Поэтому потребление структурированной воды легко усваивается организмом и не требует энергетических затрат.
Чем полезна структурированная вода
Структурированная вода, имеющая структуру близкую к внутренней жидкости организма легко усваивается организмом, не тратиться дополнительная клеточная энергия на преобразование в низкомолекулярную. Биологическое действие на организм связано с тем, что каналы мембран клеток имеют регулярную структуру схожую со структурой преобразованной воды, в результате молекулы структурированной воды пропускаются с повышенной скоростью. Кстати, таким же эффектом объясняется польза от потребления различных фруктов и овощей в связи с тем, что, межклеточная жидкость растений, имеет аналогичную структуру.
Вывод: Клеточная вода любого живого организма имеет упорядоченную структуру (структурированная), а употребление структурированной воды не требует затрат дополнительной энергии на ее преобразование. Высвободившийся энергетический потенциал организм использует на собственное восстановление, тем самым укрепляется иммунитет, регенерация тканей. Существенно повышается порог интеллектуальных и стрессовых перегрузок.
Вода с «живой» структурой без труда проникает через мембраны клеток, где приносит каждой клетке витамины и питательные вещества, вымывает токсины и шлаки из организма, а также усиливает действие натуральных лекарственных препаратов.
Как обычно структурируют воду в домашних условиях
Вода структурируется, а точнее обретает особую регулярную структуру при воздействии некоторых факторов, от которых зависят способы ее приготовления и жизненный цикл регулярной структуры. Например,
- при замораживании-оттаивании воды (талая вода, где сохраняются “ледяные” кластеры)
- при воздействии электрического поля (электролиз)
- при воздействии постоянного магнитного поля (магниты)
- при химических воздействиях (магниевый стержень ViloVit)
- при механических воздействиях, происходит незначительное изменение структуры (встряхивание, перемешивание, течение в различных режимах)
Полученная структурированная вода становиться активной и несет полезные свойства для всего организма.
Источник