Проницаемость горных пород пласта
Проницаемость горных пород пласта — способность пород пласта пропускать жидкость и газ при перепаде давления.
При относительно небольших перепадах давления в нефтяных пластах многие породы в результате незначительных размеров пор оказываются практически непроницаемыми для жидкостей и газов (глины, сланцы и т.д.).
Хотя при сверхвысоких давлениях все горные породы проницаемы.
Хорошо проницаемыми породами являются: песок, песчаники, доломиты, доломитизированные известняки, глины с массивной пакетной упаковкой, алевролиты.
Плохо проницаемыми породами являются: глины, с упорядоченной пакетной упаковкой, глинистые сланцы, песчаники с глинистой цементацией, мергели.
Различают также абсолютную, фазовую и относительную проницаемости.
Абсолютная проницаемость — проницаемость пористой среды, заполненной лишь одной фазой, инертной к пористой среде.
Она зависит от размера и структуры поровых каналов, но не зависит от насыщающего флюида, т.е. характеризует физические свойства породы.
Обычно абсолютную проницаемость определяют при фильтрации азота через породу.
Для оценки проницаемости горных пород применяется открытый в 1856 г линейный закон фильтрации Дарси, который установил зависимость скорости фильтрации жидкости от градиента давления.
Абсолютную проницаемость определяют на основании закона Дарси по уравнению:
qф — объемный расход флюида (дебит), м3/с;
k — проницаемость пористой среды, м2;
η — динамическая вязкость флюида, Па·с;
ΔP=Р1-Р2 — перепад давления, Па;
L — длина образца пористой среды, м;
F — площадь фильтрации, м2.
Проницаемость определяется как:
Единица проницаемости называемая Дарси (Д), соответствует проницаемости горной породы, через поперечное сечение которой, равное 1 см 2 , при ламинарном режиме фильтрации, при перепаде давления в 1 атм на протяжении 1 см в 1 сек проходит 1 см 3 жидкости, вязкость которой 1 сП.
Физический смысл размерности проницаемости — это площадь сечения каналов пористой среды, через которые идет фильтрация.
Существует несколько типов каналов:
Проницаемость пород, служащих коллекторами, может быть выражена в миллидарси (мД), мкм 2 или м 2 .
Проницаемостью в 1 м 2 соответствует проницаемости горной породы при фильтрации через образец площадью 1 м2 длиной 1 м и при перепаде давления 1 Па, при которой расход жидкости вязкостью 1 Па*с составляет 1 м3.
Размерность параметров уравнения Дарси в разных системах единиц
Источник
ОТНОСИТЕЛЬНЫЕ ФАЗОВЫЕ ПРОНИЦАЕМОСТИ (ОФП)
Есть два представления о механизме совместного течения пластовых флюидов в пористой среде. Согласно первому, подробно описанному М. Маскетом, при течении двух несмешивающихся фаз часть наиболее тонких поровых каналов и углы крупных пор заняты смачивающей фазой (пластовой водой), а по остальным каналам, содержащим смачивающую жидкость на поверхности пор, может происходить струйное движение флюидов. Количество двигающихся флюидов в каждый момент определяется величинами насыщенности и проницаемости среды для этих флюидов. С ростом насыщенности породы одной фазой увеличивается доля каналов, обеспечивающих движение этой фазы и уменьшается доля каналов для другой фазы.
При вытеснении воды нефтью водонасыщенность породы понижается. При этом быстро возрастает проницаемость для нефти. При снижении водонасыщения до величины кв.о проницаемость породы для смачивающей фазы оказывается равной нулю.
При вытеснении нефти водой увеличивается насыщенность породы смачивающей фазой. При этом проницаемость для нефти резко уменьшается. При снижении нефтенасыщения до величины коэффициента остаточного нефтенасыщения кн.о проницаемость породы для нефти оказывается равной нулю. Как правило, величина кн.о несколько превышает кв.о.
При наличии в порах коллектора трех фаз (газа, нефти и воды) принцип их распределения сходен с двухфазной системой. Вода полностью занимает поры наименьшего размера, углы пор и в виде тонкой пленки смачивает остальные поры, нефть занимает более крупные поры, а газ—центральные участки наиболее крупных пор, занятых нефтью, и с водой практически не контактирует.
Описанное выше представление о течении несмешивающихся флюидов позволяет использовать информацию о распределении пор по размерам для оценки динамики фазовых проницаемостей.
Другое представление о механизме совместной фильтрации предполагает течение несмешивающихся жидкостей по поровым каналам в форме четок несмачивающей жидкости (нефти) в смачиваемой (воде). Это представление предполагает образование в порах нефтяной эмульсии, создающей высокие фильтрационные сопротивления в зоне смеси, обусловливающие снижение фазовых проницаемостей.
Прочность эмульсии, время ее существования зависят от свойств межфазных пленок, а дисперсность определяется структурными свойствами пористой среды и скоростью фильтрации. Однако гидродинамическое моделирование этого процесса затруднено.
Вероятно, можно будет допустить, что в природных условиях могут иметь место оба механизма течения, когда один вид движения флюидов может переходить в другой.
Рассмотрим подробнее случай двухфазного течения смачивающей и несмачивающей фаз в гидрофильном коллекторе, например, для воды и нефти рис. 5.21. В случае гидрофильной породы, начиная с очень малого процента насыщения, вода образует на поверхности подвешенные прерывные пленки на зернах и кольца на стыках зерен, при этом в самых тонких каналах и малых порах пленки могут занимать весь их объем. Эта вода неподвижна. Давление по флюиду не может быть передано по этой разобщенной влаге. По мере увеличения насыщенности смачивающей фазой размеры подвешенных колец и толщина прерывистых пленок увеличиваются и образуется непрерывная пространственная сетка. Водонасыщенность, при которой происходит этот переход, называют критической, а состояние насыщенности ниже критической — подвешенным.При значениях водонасыщенности выше критической для смачивающей фазы открывается непрерывный извилистый путь ее движения, если существует перепад давления по флюиду. Такое состояние насыщенности называют фуникулерным. Значение критической водонасыщенности Квкр можно оценить только в процессе изучения фазового течения. Аналогичные рассуждения можно провести и относительно несмачивающей фазы с той разницей, что несмачивающая фаза будет занимать центральное положение в порах и в отсутствие ее движения называется островной.
МЕТОДЫ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНЫХ ФАЗОВЫХ ПРОНИЦАЕМОСТЕЙ (ОФП)
Существуют прямые и косвенные методы определения ОФП. К прямым относятся лабораторные методы: 1) стационарной (установившейся) фильтрации и 2) вытеснения. К косвенным: расчетные методы по кривым капиллярного давления; по промысловым данным; по данным геофизических исследований скважин.
Для соблюдения геометрического подобия лабораторного моделирования Д. А. Эфрос рекомендует соблюдать соотношение:
Наиболее достоверны прямые лабораторные методы определения ОФП. В результате этих исследований получают кривые ОФП. В методе стационарной фильтрации, определение коэффициентов фазовых проницаемостей проводится при совместном течении двух фаз при разном насыщении. В качестве примера ниже приведены результаты исследования на образце при двух фазовом совместном течении нефти и воды, вода является смачивающей фазой (рис. 5.22).
В ходе этого эксперимента испытания проводились в шести режимах:
- При отсутствии воды в потоке;
- При 5 % содержания воды в потоке;
- При 25 % содержания воды в потоке;
- При 50 % содержания воды в потоке;
- При 75 % содержания воды в потоке;
- При 100 % содержания воды в потоке;
После каждого режима замеряют объемы вышедших из образца жидкостей и рассчитывают проницаемости используя закон Дарси.
Значения относительных фазовый проницаемостей для нефти и воды рассчитывают по формулам:
где Кнi, Квi – фазовые проницаемости для нефти и воды на i-том режиме,
Кн отн , Кв отн – относительные фазовые проницаемости для нефти и воды на i-том режиме,
К – абсолютная проницаемость образца.
В методе вытеснения относительные проницаемости зависят от направления, в котором изменяется насыщенность несмачивающей фазой. Если в пласт нагнетается несмачивающая фаза (нефть, газ), такое направление называют дренированием. При этом нефть избирательно вытесняет воду из более крупных капилляров в узкие. В итоге при перепаде пластового давления образуется два раздельных потока: по системе более крупных пор фильтруется несмачивающая фаза, а по системе более мелких — смачивающая.
В противоположность вышеназванному существует процесс, когда вода первоначально находится в виде остаточной, а нефть занимает остальную часть пространства, т.е. порода гидрофильна, а вытесняющая фаза — смачивающая. В этом случае капиллярные силы действуют так, что каждый капилляр стремиться впитать воду и вытеснить из него часть нефти, поэтому процесс вытеснения нефти водой называется впитыванием. Первоначально нефтенасыщенность снижается вместе с изменением кривизны границы раздела «нефть—вода» в сплошной нефтяной фазе. Благодаря большой поверхности раздела обе фазы сильно влияют друг на друга и на скорость процесса вытеснения нефти водой. Чаще всего используют именно впитывание. Во время эксперимента записывают сколько воды было закачено в образец, сколько нефти вытеснено и перепад давления на образце. С помощью полученных данных используя специализированные методики рассчитывают ОФП.
Среди косвенных методов наибольшее применение нашел метод расчета ОФП по кривым капиллярного давления. Экспериментально определяют кривые капиллярного давления рк = f(кв), которые перестраиваются графически в функцию 1/р 2 к =f(кв) и затем рассчитывают ОФП используя подобные интегральные уравнения:
Пример теоретически рассчитанных кривых ОФП. Рис. 8.18.
ОФП увеличивается при увеличении содержания в коллекторе соответствующей фазы. При Кв>Кв* начинается фильтрация воды, при Кв -3 Н/м). Увеличение σ сужает диапазон совместного течения флюидов (Д. О. Амаефул, Л. Л. Хэнди, 1982 г.).
Гидрофобизация коллекторов в природных условиях обусловлена адсорбцией на поверхности породы полярных компонентов нефти и битумоидов. С увеличением гидрофобности поверхности пересечение кривых ОФП смещается влево, в сторону более низких водонасыщений. В соответствии с этим относительная проницаемость для воды существенно возрастает, а для нефти — снижается.
С увеличением температуры уменьшается поверхностное натяжение, изменяется межфазное натяжение, увеличивается гидрофильность породы. С увеличением температуры ОФП для нефти растет, а для воды изменяется в ту или другую сторону (кривые ОФП смещаются в сторону повышенных водонасыщений, особенно при низком межфазном натяжении), ОФП для газа практически не изменяются от температуры.
Значения ОФП с увеличением скорости фильтрации возрастают. И хотя физическая сторона этого явления не совсем ясна, опыты по определению ОФП рекомендуется проводить на скоростях фильтрации, близких к пластовым условиям конкретного месторождения.
Трехфазная фильтрация (нефть, газ и вода) может иметь место при разработке месторождений нефти на поздней стадии, газовых месторождений с нефтяной оторочкой, при закачке газа или водогазовых смесей в нефтяной пласт.
Результаты экспериментальных исследований трехфазной фильтрации весьма немногочисленны (М. К- Леверетт, В. Б. Ле-вис, 1941 г.; Б. Н. Коудел и др., 1951 г; С. А. Кундин, 1960 г.; С. Н. Пирсон и др., 1964 г.; В. А. Иванов, 1965 г.).
Результаты измерений относительных проницаемостей при трехфазной фильтрации принято изображать в виде треугольных диаграмм или задавать в виде таблиц.
Результаты большинства из указанных выше авторов качественно согласуются с первыми данными М. К. Леверетта на насыпном грунте, которые сформулированы следующим образом:
проницаемость для воды зависит только от водонасыщенности;
проницаемость для нефти и газа зависит от насыщенности всех трех фаз;
проницаемость для газа в трехфазной системе несколько ниже, чем при той же газонасыщенности в двухфазной системе;
проницаемость для нефти в трехфазной системе может быть больше или меньше ее проницаемости в двухфазной системе при тех же коэффициентах нефтенасыщения;
фазовые проницаемости для нефти, газа и воды не зависят от вязкости нефтяной фазы;
существует сравнительно небольшая область, в которой происходит фильтрация всех трех фаз.
В количественном отношении результаты разных авторов существенно отличаются. Очень много еще неясного в механизме трехфазной фильтрации.
Таким образом, для повышения достоверности лабораторных определений ОФП исследования необходимо проводить с соблюдением всех критериев подобия натурных и лабораторных условий. С этой целью должны использоваться естественные керны пород, натуральная нефть и модель пластовой воды, природные давление и температура.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Фазовые проницаемости для нефти и воды. Лекция 3
Фазовые проницаемости для нефти и воды
В породах нефтяных месторождений одновременно присутствуют две или три фазы. При фильтрации проницаемость породы для одной какой-либо фазы ниже ее абсолютной проницаемости. В основном фазовая проницаемость является функцией насыщенности пористой cреды. При этом на фильтрационные характеристики породы существенное влияние оказывают: строение порового пространства, смачиваемость поверхности каналов фильтрации, химический состав и свойства жидкости на границах раздела фаз. Совместное двух- или трехфазное течение изучают экспериментально и представляют в виде зависимостей относительных фазовых проницаемостей от водонасыщенности. Для определения значений эффективной проницаемости для нефти и воды при движении многофазных систем пользуются следующими соотношениями:
Эксперименты показали, что фазовые проницаемости всегда меньше, чем абсолютные, даже если в пористой среде осуществляется однофазная фильтрация. Например, при остаточной водонасыщенности фазовая проницаемость для нефти ниже абсолютной. То же самое относится и к фазовой проницаемости для воды при остаточной нефтенасыщенности.
Существует несколько методов измерения относительных фазовых проницаемостей. Наиболее точным считается измерение фазовых проницаемостей при стационарной фильтрации нефти и воды. При этом воду и нефть (или ее аналог) нагнетают в образец с определенным соотношением расходов, добиваясь равенства их на входе и выходе при стабилизации перепада давления. Водонасыщенность пористой среды рассчитывают по формуле, предложенной специалистами ВНИИнефть:
или, если фазовые проницаемости выразить через долю воды в потоке жидкости:
где fв , D P — текущие значения доли воды в потоке и перепад давления. Кроме того, водонасыщенность пористой среды можно определить, измеряя электрическое сопротивление, если предварительно для изучаемых образцов установлена зависимость параметра насыщения (отношение электрического сопротивления частично водонасыщенной породы к сопротивлению ее при 100%-ной водонасыщенности) от коэффициента водонасыщенности и, если, минерализация воды не меняется в процессе эксперимента.
Другой метод основан на обработке результатов нестационарного вытеснения нефти водой при постоянном расходе или постоянном перепаде давления. В процессе эксперимента измеряют объемы закачанной воды и добытой нефти и измеряют перепад давления, а затем решается обратная задача теории фильтрации, когда по изменению водонасыщенности в выходном сечении образца определяется функция обводненности.
По известной обводненности продукции вычисляется отношение фазовых проницаемостей от водонасыщенности в выходном сечении образца:
Текущие значения функции насыщенности в выходном сечении вычисляются как:
Третий способ, который часто используется в практике лабораторных исследований, основан на анализе результатов капиллярометрии, является наименее точным В этом случае пористая среда моделируется пучком капилляров различного радиуса, а относительные фазовые проницаемости рассчитываются как:
,
Здесь t — извилистость каналов фильтрации. Для ее расчета обычно используют формулу Роуза-Уилли:
где m — пористость; Рп — параметр пористости (отношение электрического сопротивления водонасыщенной породы к сопротивлению воды). Видно, что в последнем случае слишком много условностей и допущений, что не способствует повышению точности. Сравнение кривых фазовых проницаемостей, рассчитанных по кривым капиллярного давления и по результатам нестационарного вытесненияч нефти водой показало, что они близки лишь при малой вязкости нефти ( × с). Таким образом, метод пригоден только для коллекторов с достаточно простым строением порового пространства, содержащих маловязкие неактивные нефти.
Сложное взаимодействие породы с фильтрующимися через нее жидкостями предопределяет своеобразие относительных фазовых проницаемостей в каждом конкретном случае. Исследование факторов, влияющих на характер относительных фазовых проницаемостей посвящены работы зарубежных и Российских ученых.
Рассматривая, например, влияние строения порового пространства на характер относительных фазовых проницаемостей, исследователи отмечают, что наиболее существенные различия наблюдаются для пород, относящихся к различным структурным типам. Ухудшение отсортированности песчаников или переход от мелко- к крупнозернистым песчаникам приводит к смещению зависимостей относительных фазовых проницаемостей от водонасыщенности в сторону меньшей водонасыщенности.
С улучшением смачиваемости поверхности водой увеличивается фазовая проницаемость для несмачивающей фазы, а для воды наоборот снижается, что приводит к смещению кривых в сторону увеличения водонасыщенности. Эти отличия обусловлены различным характером распределения нефти и воды в поровом пространстве пород с различными физико-химическими свойствами поверхности. В гидрофильных породах вода, как смачивающая фаза, занимая более тонкие каналы, становится менее подвижной. К тому же она сильнее взаимодействует с гидрофильной поверхностью. Нефть в этом случае располагается на определенном расстоянии от стенок каналов фильтрации и может быть достаточно подвижной. Существенную роль при этом играет химический состав пород.
На характер зависимостей относительных фазовых проницаемостей оказывает влияние физико-химические свойства нефтей. Степень взаимодействия их с поверхностью пород и нагнетаемой водой определяется, в основном, наличием активных компонентов — асфальто-смолистых веществ, парафинов, смол. При вытеснении водой активных нефтей на границах раздела фаз образуются межфазные пленки различной прочности, снижающие относительную проницаемость для нефти. Адсорбция активных компонентов на поверхности пород приводит к их гидрофобизации, что также вызывает изменение относительных проницаемостей. Изменение реологических характеристик пластовых жидкостей, например, вследствие повышения температуры, приводит к изменению характера фильтрации и, соответственно, отражается на относительных проницаемостях для нефти и воды.
В последние несколько десятилетий широкое распространение получают физико-химические методы воздействия на пласт. Заводнение с растворами химреагентов это сложный процесс, сопровождающийся изменением компонентного состава фаз, гидродинамических параметров потоков и др. Например, растворы щелочей способны изменить характер смачиваемости поверхности пород, особенно терригенных, резко снижают поверхностное натяжение на границе с нефтью, образуют стойкие водонефтяные эмульсии.
Нагнетание оторочки раствора щелочи в терригенные породы приводит к расширению области двухфазной фильтрации, увеличению относительной проницаемости для нефти и снижению подвижности воды. То есть, наблюдается картина, характерная для процесса гидрофилизации поверхности.
Щелочное заводнение в карбонатах чаще всего сопровождается лишь увеличением относительной подвижности нефти в то время, как относительная проницаемость для воды остается неизменной. Одной из причин этого возможно является отсутсвие изменений свойств поверхности карбонатов на границе с раствором щелочи. Поэтому изменение условий фильтрации здесь связано только со снижением межфазного натяжения и изменением свойств самой нефти в ходе реакции содержащихся в ней активных компонентов со щелочью. Заводнение с другими химическими веществами по разному влияет на характер фильтрации нефти и воды.
Нагнетание оторочек растворов сульфонола НП-3 или алкилсульфоната в карбонатные породы вызывало изменения фазовых проницаемостей, характерные для щелочного заводнения в известняках. Закачка анионактивных ПАВ, композиций на их основе с гидроокисью натрия и НП-3 с кальцинированной содой в терригенные породы вследствие некоторой гидрофилизации поверхности кварцевых песчаников позволяет снизить подвижность смачивающей фазы. Проницаемость же для нефти остается неизменной.
Разное влияние на процесс фильтрации несмешивающихся жидкостей в поровом пространстве оказывают неионогенные ПАВ типа ОП-10, которые, адсорбируясь, в зависимости от характера первоначальной смачиваемости поверхности могут гидрофобизовать или, наоборот, гидрофилизовать ее.
Полимерное заводнение сопровождается снижением проницаемости пористой среды как для нефти, так и для воды. Соотношение величин этого снижения определяет эффективность или неэффективность полимерного заводнения с точки зрения механизма фильтрации пластовых жидкостей.
Таким образом, изучение характера фильтрации несмешивающихся жидкостей с помощью фазовых проницаемостей в комплексе с другими исследованиями может способствовать более глубокому пониманию механизма вытеснения нефти водой и растворами химических веществ.
Относительные фазовые проницаемости при вытеснении нефти водой (1) и оторочкой раствора ПАА (2) из карбонатных пород турнейского яруса Мишкинского месторождения (Кпр=0,484 мкм 2 )
Источник