Овр металлов с водой

Правила составления окислительно-восстановительных реакций

Основные правила составления окислительно-восстановительных реакций

Существует несколько основных правил, которые сильно упрощают составление окислительно-восстановительных реакций. Более подробно эти и другие правила рассматривается на других страницах этого раздела, но для ЕГЭ достаточно знать правила из этого списка.

Реакции простых веществ: металлов и неметаллов с щелочами, кислотами и солями:

1.1) Из металлов только Al, Zn и Be взаимодействуют со щелочами с выделением водорода:
Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2­
Be + 2NaOH + 2H2O → Na2[Be(OH)4] + H2
2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

1.2) Из неметаллов только S, P, Si и галогены реагируют с щелочами:

Cl2 + 2NaOH → NaCl + NaClO + H2O (аналогично для Br2, I2)

3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (при нагревании, аналогично для Br2, I2)

2.1) Металлы ( стоящие в ряду активности металлов до H2) реагируют с кислотами-неокислителями с выделением водорода:

2HCl + Fe → FeCl2 + H2
H2SO4(р) + Fe → FeSO4 + H2

2.2) Все металлы, кроме Pt и Au, реагируют с кислотами-окислителями без выделения водорода:
2H2SO4(к) + 2Ag → Ag2SO4 + SO2 + 2H2O
6H2SO4(к) + 2Fe&nbsp → Fe2(SO4)3 + 3SO2 + 6H2O

2.3) Более сильные металлы вытесняют более слабые из растворов их солей:

3) Неметаллы не реагируют с кислотами-неокислителями:
C + HCl → реакция не идет

4) Такие неметаллы, как S, C, P могут реагировать с солями, проявляющими окислительные свойства (KClO3, KNO3 в расплавленном состоянии):

C + 2KNO3 (расплав) → CO2 + 2KNO2

S + 2KNO3 (расплав) → SO2 + 2KNO2

Важная реакция получения фосфора:

5) Из неметаллов только S, C, и P реагируют с кислотами-окислителями (в рамках ЕГЭ), а также I2 с HNO3(к):

C + H2SO4(конц.) → CO2 + 2SO2 + 2H2O (t)

S + 2H2SO4(конц.) → 3SO2 + 2H2O (t)

2P + 5H2SO4(конц.) → 2H3PO4 + 5SO2 + 2H2O (t)

C + 4HNO3(конц.) → CO2 + 4NO2 + 2H2O

P + 5HNO3(конц.)&nbsp → H3PO4 + 5NO2 + H2O

S + 6HNO3(конц.) → H2SO4 + 6NO2 + 2H2O

I2 + 10HNO3(к) → 2HIO3 + 10NO2+ 4H2O (t, другие галогены с кислотами не реагируют)

Фосфор

1) Наиболее устойчивая степень окисления фосфора +5, следовательно, любые другие соединения фосфора окисляются сильными окислителями до этой степени окисления (с образованием P2O5 или фосфат-иона):

Азот

1) Аммиак, как правило, окисляется до азота N2:

8NH3 + 3KBrO4 → 3KBr + 4N2 + 12H2O

2NH3 + 3CuO → 3Cu + N2­ + 6H2O

Исключением является каталитическое окисление аммиака:
4NH3 + 5O2 → 4NO + 6H2O (катализатор)

Обычное горение аммиака протекает с образованием N2 (как и горение любых органических азотсодержащих соединений):
4NH3 + 3O2 → 2N2 + 6H2O

2) Нитрит-ионы окисляются до нитрат-ионов:

3KNO2 + 2KMnO4 + H2O → 3KNO3 + 2MnO2 + 2KOH

3) Нитрит-ионы восстанавливаются до азота в реакциях с солями аммония:

NaNO2 + NH4Cl → N2­­ + NaCl + 2H2O (по сути, идет разложение нитрита аммония: NH4NO2 → N2 + 2H2O)

Ca(NO2)2 + (NH4)2SO4 → 2N2­­ + CaSO4 + 4H2O

4) Нитрит-ионы восстанавливаются до оксида азота (II) в реакциях с типичными восстановителями: HI, йодидами, солями Fe +2 и др.:

2KNO2 + 2KI + 2H2SO4 → 2NO­­ + I2 + 2K2SO4 + 2H2O

HNO2 + 2HI → 2NO­­ + I2 + 2H2O

Следующий тип реакций встречается в вариантах Ю.Н. Медведева.

5) Нитрат-ионы могут восстанавливаться до нитрит-ионов (соединениями Cr, Mn, Fe, сплавление в щелочной среде):

6) Восстановление нитратов до аммиака в реакциях с такими металлами, как Al, Zn, Mg (встречается очень редко):

3NaNO3 + 8Al + 5NaOH +18H2O → 3NH3 + 8Na[Al(OH)4]

NaNO3 + 4Zn + 7NaOH + 6H2O → NH3 + 4Na2[Zn(OH)4]

KNO3 + 4Mg + 6H2O → NH3 + 4Mg(OH)2 + KOH

Кислород

1) Перекись водорода окисляется до кислорода O2 типичными окислителями:
KMnO4, K2Cr2O7, галогены, соли кислородсодержащих кислот хлора (например, KClO3) и некоторыми другими.

5H2O2 + KMnO4 + 3H2SO4 → 2MnSO4 + K2SO4 + 5O2 + 8H2O

3H2O2 + 2KNO3 + H2SO4 → K2SO4 + 2NO + 3O2­ + 4H2O

2) Перекись водорода восстанавливается до H2O типичными восстановителями:
KI (HI, йодиды), K2SO3 (SO2, сульфиты), KNO2 (нитриты), PbS (H2S, сульфиды), соединения Cr +3 в щелочной среде, соединения Fe +2 , NH3 и некоторыми другими.

Галогены

1) Галогены диспропорционируют в щелочах:

Cl2 + 2NaOH → NaCl + NaClO + H2O (аналогично для Br2, I2)

3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (при нагревании, аналогично для Br2, I2)

2) Простые вещества галогены и соединения галогенов в любой положительной степени окисления восстанавливаются, как правило, до галогенид-ионов (т.е. до ст. ок. -1) в реакциях с типичными восстановителями:

KClO3 + 6Fe(OH)2 + 18HCl → 6FeCl3 + KCl + 15H2O

2Br2 + CrCl2 + 8NaOH → Na2CrO4 + 2NaCl + 4NaBr + 4H2O

Исключение: соединения йода в высоких степенях окисления могут восстанавливаться до I2, а не до йодид-иона
KIO3 + 5KI + 3H2SO4 → 3I2 + 3K2SO4 + 3H2O.

3) Галогенид-ионы окисляются, как правило, до простых веществ: Cl2, Br2, I2:

14HCl + K2Cr2O7 → 3Cl2 + 2CrCl3 + 2KCl + 7H2O
16HCl + 2KMnO4&nbsp → 5Cl2 + 2MnCl2 + 2KCl + 8H2O

4) Йодид меди восстанавливает серную кислоту до SO2, тогда как йодиды активных металлов до H2S:

5) Концентрированной серной кислотой окисляются только бромид- и йодид-ионы. В первом случае образуется SO2, во втором H2S.

Сера

1) Сульфид-ионы обычно окисляются до S типичными окислителями: Br2, I2, растворами солей K2Cr2O7, KMnO4 и др.:
3Na2S + K2Cr2O7 + 7H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 3Na2SO4 + 7H2O
5Na2S + 2KMnO4 + 16HCl → 5S + 2MnCl2 + 10NaCl + 2KCl + 8H2O
H2S + Br2S + 2HBr
H2S + H2O2S + 2H2O (образование H2SO4 возможно, зависит от условий задания)

2) С H2SO4(к) сероводород и сульфиды реагируют с образованием SO2, аналогично реакции кислоты с серой:

S + H2SO4(конц.) → 3SO2 + 2H2O (t)
H2S + 3H2SO4(конц.) → 4SO2 + 4H2O (t)

K2S + 4H2SO4(конц.) → K2SO4 + 4SO2 + 4H2O
В этой реакции сульфид-ион окисляется до SO2: S –2 -6e → S +4 .
Часть сульфат-ионов восстанавливается также до SO2 и часть остается для образования соли K2SO4.

3) Окисление H2S и сульфидов до сульфат-ионов протекает в реакциях с такими окислителями, как Cl2 в воде, H2O2, HNO3(конц.) при нагревании:

H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl
H2S + 8HNO3(конц.) → H2SO4 + 8NO2 + 4H2O (образование S будет считаться ошибкой!)
PbS + 4H2O2 → PbSO4 + 4H2O (черный сульфид свинца превращается в белый сульфат)

4) Сульфит-ионы любыми окислителями окисляются до сульфат-иона:
3Na2SO3 + 2KMnO4 + H2O → 2MnO2 + 2Na2SO4 + 2KOH

Медь

1) Соединения Cu +2 окисляют соединения S +4 и I – (восстанавливаясь до Cu +1 ):

2CuCl2 + SO2 + 2H2O → 2CuCl + 2HCl + H2SO4
2Cu(NO3)2 + 4KI → 2CuI + I2 + 4KNO3

В реакции с аммиаком выделяется металлическая медь:
3CuO + 2NH3 → N2 + 3Cu + 3H2O

2) Йодиды меди реагируют с H2SO4(к) с образованием SO2, тогда как йодиды щелочных металлов с образованием H2S:

3) Медь по-разному реагирует с галогенами:

Cu + Cl2 → CuCl2
Cu + Br2 → CuBr2
2Cu + I2 → 2CuI (соль меди +1)

4) Медь в степени окисления +2 восстанавливается самой медью:
CuO + Cu → Cu2O (t)
CuCl2 + Cu → 2CuCl (t).

Железо

1) Соединения Fe +3 окисляют соединения S –2 , S +4 , I – и некоторые слабые металлы (восстанавливаясь до Fe +2 ):

Fe2O3 + 6HI → 2FeI2 + I2 + 3H2O

2FeCl3 + 3Na2S → 2FeS + S + 6NaCl

2FeCl3 + H2S → 2FeCl2 + S + 2HCl

2FeCl3 + Cu → CuCl2 + 2FeCl2 (соль железа +2)

2) В кислой среде соединения Fe +2 окисляются такими окислителями, как KMnO4, K2Cr2O7, HNO3, H2SO4(к) и др. до солей Fe +3 :

3) Железо по-разному реагирует с галогенами:

4) Соединения Fe +2 , Fe +3 также могут быть окислены до степени окисления +6 (до ферратов, например, Na2FeO4) очень сильными окислителями, но на ЕГЭ знание этих реакций не проверяется (источник: вебинары от разработчиков экзамена):
3FeSO4 + 2NaClO3 + 12NaOH → 3Na2FeO4 + 2NaCl + 3Na2SO4 + 6H2O.

Марганец

1) В кислой среде образуются соли Mn +2 :
K2MnO4 + 8HBr → MnBr2 + 2Br2 + 2KBr + 4H2O
2KMnO4 + 5SO2 + 2H2O → 2MnSO4 + K2SO4 + 2H2SO4

2) В щелочной среде образуется манганат-ион MnO4 2– (зеленого цвета):
MnSO4 + 2Br2 + 8KOH → K2MnO4 + 4KBr + Na2SO4 + 4H2O
2KMnO4 + 2FeSO4 + 6NaOH → K2MnO4 + 2Fe(OH)3 + Na2MnO4 + 2Na2SO4

3) В нейтральной среде образуется осадок бурого цвета MnO2:
3MnSO4 + 2KMnO4 + 2H2O → 5MnO2 + K2SO4 + 2H2SO4
2KMnO4 + 3K2S + 4H2O → 2MnO2 + 3S + 8KOH
K2MnO4 + Na2S + 2H2O → S + MnO2 + 2NaOH + 2KOH

Хром

1) Восстановление дихроматов в кислой среде протекает с образованием солей Cr +3 :
Na2Cr2O7 + 6NaI + 7H2SO4Cr2(SO4)3 + 3I2 + 4Na2SO4 + 7H2O
K2Cr2O7 + 6FeSO4 + 7H2SO4Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O
K2Cr2O7 + 3KNO2 + 8HNO3 → 2Cr(NO3)3 + 5KNO3 + 4H2O

2) Окисление соединений Cr +2 в кислой среде протекает с образованием солей Cr +3 :

3) Окисление соединений Cr +3 очень сильными окислителями с щелочами или с карбонатами щелочных металлов протекает с образованием хроматов (типичные окислители: KNO3, Cl2, KClO3, H2O2 и др. в щел. среде):

4) Соединения Cr +6 в различных средах:
В щелочной среде устойчивы соли хромовой кислоты (хроматы, желтого цвета), например, Na2CrO4.
В кислой среде устойчивы соли дихромовой кислоты (дихроматы, оранжевого цвета), например, Na2Cr2O7.

2K2CrO4 + H2SO4 → K2Cr2O7 + K2SO4 + H2O (в кислотной среде желтая окраска переходит в оранжевую).
Na2Cr2O7 + 2NaOH → 2Na2CrO4 + H2O (в щелочной среде оранжевая окраска переходит в желтую).

Среда раствора

1) С карбонатами щелочных металлов реакции протекают аналогично щелочной среде реакции:

2) Если в реакцию вступает оксид серы (IV) SO2 в нейтральном растворе, то реакция протекает аналогично кислой среде раствора:

Поэтому очень важно не зубрить окислительно-восстановительные реакции, а знать какие соединения проявляют окислительные, а какие восстановительные свойства, и знать основные правила, приведенные выше.

Источник

Читайте также:  Заговоренная вода от пьянства
Оцените статью