- Как речная вода становится питьевой?
- Основные источники пресной воды
- Очистка воды для водопровода
- Очистка канализационных стоков
- Очиститель воды в кармане
- Сколько стоит очистка воды
- Можно ли дешевле?
- Какой должна быть питьевая вода — Часть 1
- Что значит чистая вода?
- Можно ли пить совсем чистую воду?
- Так где взять воду для питья?
Как речная вода становится питьевой?
Открыть кран и налить воду в чайник — что может быть проще? Взять речную воду, очистить её до состояния питьевой, а потом грязный канализационный сток превратить обратно в чистую воду — что может быть сложнее? И затратнее. Разбираемся, как вода из рек попадает к нам в кран и сколько приходится платить за её очистку.
Основные источники пресной воды
71% нашей планеты покрыт водой. В основном, солёной водой, абсолютно непригодной для питья. В общем количестве мировой воды всего 3% пресной. Если из этого скромного объёма убрать 68% льдов на полюсах и 30% подземных пресных источников, останется 0,8% в вечной мерзлоте, 0,2% в озёрах, 0,006% в реках и ещё чуть-чуть в атмосфере. То есть, количество легкодоступной пресной воды на планете мало, а та, что есть, чаще всего не подходит для питья без обработки. Так что примем за отправную точку тот факт, что питьевая вода — дорогой и дефицитный ресурс.
Россия лидирует по количеству поверхностной пресной воды, поэтому чаще всего воду для городского водоснабжения берут из крупных озёр и рек. Для небольших поселений используются артезианские скважины. Но даже в тех местностях, где протекают относительно чистые реки или прорыты скважины, вода требует подготовки перед тем, как её можно будет использовать для центрального водоснабжения, ведь в воде могут быть вирусы, опасные бактерии, тяжёлые металлы и прочие химические загрязнения. Так железистая вода бьёт по печени и сердечно-сосудистой системе, избыток фтора портит зубы и кости, диоксины, оставшиеся от сжигания мусора, вредят нервной системе и вызывают рак, слишком жёсткая вода провоцирует образование камней в почках, а свинец отрицательно влияет на развитие детей и вызывает анемию. А уж про бактерии и вирусы и так всё понятно — заболевания, аллергии и расстройства ЖКТ обеспечены. Да и использованную воду тоже хорошо бы очищать, а не просто сливать обратно в реку.
Городской цикл очистки воды состоит из двух этапов: забор воды из водоёмов и очистка для использования в водопроводах, а затем очистка получившихся канализационных стоков и сброс воды обратно в водоёмы. То есть водоснабжение и канализация.
Очистка воды для водопровода
Сперва на примере Москвы разберёмся, как вода попадает в водопровод. Как сообщает сайт Мосводоканала, «централизованное водоснабжение московского региона осуществляется, в основном, из поверхностных водоисточников. Ими являются Москворецко-Вазузская и Волжская водные системы, в которые входят 15 водохранилищ и тракты подачи воды — река Москва с притоками и канал им. Москвы.» Общая суточная водоотдача водозаборных станций столицы составляет 11 млн кубометров, что почти вчетверо превышает потребление.
Москвичи пьют воду из протекающей через весь город реки Москвы, хотя эта мысль сперва пугает. На самом деле, прежде чем содержимое судоходных рек попадёт в квартиры, вода проходит комплексную очистку на одной из четырёх станций водоподготовки. Места забора воды из рек закрыты и тщательно охраняются — это буквально стратегические объекты.
После грубой фильтрации воду озонируют, избавляясь от органики всех размеров, и смешивают с коагулянтами и флокулянтами. Эти реагенты «сбивают» оставшиеся загрязнения в хлопья, которые затем оседают. Смешивание воды с реагентами происходит в течение десяти минут — при меньшем времени хлопья не образуются, при более длительном смешивании уже начинают разрушаться. После отстоя осадка, воду вновь озонируют и отправляют фильтроваться.
Тонкие струйки воды после отстоя хлопьев. Источник: Мосводоканал
В качестве фильтра выступает двухметровый слой песка, сквозь который вода проходит естественным образом. Очищают такой фильтр примерно раз в сутки напором чистой воды с обратной стороны. Далее воду переливают в другой резервуар, где она так же, под собственным весом проходит через полутораметровый слой древесного угля.
Последним этапом очистки выступают мембраны, способные задержать частицы с размером всего 0,01 микрон (это не опечатка). Каждый час мембраны чистятся обратным потоком воды. С этого момента вода считается питьевой, то есть полностью безопасной для здоровья. Анализ воды на всех этапах производится каждые четыре часа, а в условиях повышенного риска (например, весеннее половодье) раз в час.
Мембранные модули и их содержимое. Источник: Мосводоканал
Кстати, хлором воду не чистят — его, вернее безопасный гипохлорит натрия, добавляют в самом конце, чтобы предупредить заражение воды во время прохождения по городским трубопроводам. По крайней мере в Москве холодная вода из-под крана официально считается полностью безопасной для питья без дополнительной очистки и кипячения.
Очистка канализационных стоков
Превратить речную воду в питьевую непросто, но ещё сложнее канализационный сток очистить до состояния чистой и безопасной для экологии воды. Столицу обслуживают четыре водоочистных станции, куда стекается сточная вода из канализаций. Самая крупная и современная из них, Курьяновская, после модернизации способна обрабатывать до 3,1 млн кубометров в сутки. Люберецкие сооружения при необходимости примут ещё 3 млн кубометров, Зеленоградские и Бутовские вместе — 220 тыс. кубометров. То есть запас мощности очистных сооружений, которые превращают московские стоки в чистую безопасную воду, вдвое превышает текущее потребление города.
Работают они так. Сперва по трубам сток поступает в приёмную камеру очистной станции — это большие резервуары, до недавних пор открытые, от которых невыносимый запах разносился на километры вокруг. К счастью, московские очистные сооружения накрыли специальными крышками, поэтому жители окрестных домов наконец смогли забыть о запахе канализации.
Невыносимо грязная вода с огромным количеством мусора, спущенного в канализацию, проходит грубую механическую очистку, в ходе которой удаляются все посторонние предметы, видимые глазом. Сухой остаток прессуется и вывозится на полигоны хранения.
Далее в отстойниках часть грязи оседает естественным образом, после чего воду, всё ещё грязную и дурно пахнущую, можно отправлять на аэрирование. В ходе этого процесса в аэротенках (это не опечатка!) воду смешивают со специальным илом и бактериями, которые «съедают» большую часть загрязнений и органики.
В тёплой, насыщенной кислородом воде бактерии быстрее очищают воду. Источник: Мосводоканал
Оседающий ил медленно убирается илососами. Вы, наверное, встречали фотографии очистных сооружений, где в круглых бассейнах от центра к краю построен мостик. Это и есть илосос, который медленно вращается, словно стрелка часов, и собирает со дна ил. К концу работы илососа вода становится визуальной чистой, но ещё не безопасной.
Отстойники с илососами — самая узнаваемая часть очистных сооружений. Источник: Мосводоканал
На последнем этапе воду на московских очистных сооружениях обеззараживают мощными кварцевыми лампами и затем сбрасывают в реку. Формально бывший канализационный сток чище, чем вода, забранная из реки для первичной очистки для водопровода. Кстати, ни хлорировать, ни озонировать канализационную воду нельзя, иначе остаточные следы газа и химикатов попадут в реку и заодно с бактериями уничтожат всё живое.
Наглядная схема современной очистки от Мосводоканала. Источник: Мосводоканал
Очиститель воды в кармане
Идея портативного средства для очистки любой воды до уровня питьевой была актуальна всегда. Во время Первой мировой солдаты изготавливали фильтры из песка, гравия и кирпича, для индивидуального использования предназначались таблетки с хлором и дехлорирующий агент. Сейчас в российские военные ИРП вкладывают таблетки для обеззараживания воды с натриевой солью дихлоризоциануровой кислоты.
Это не рекламный трюк — портативный фильтр LifeStraw действительно позволяет пить воду из любых источников. Ну, или почти из любых… Источник: Vestergaard
В 2008 году настоящим прорывом стал трубчатый фильтр LifeStraw от швейцарской компании Vestergaard, через который можно пить воду буквально из любого водоёма, хоть из лужи. Отличием LifeStraw от типичных угольных фильтров стало применение трубчатой мембраны с порами в 0,2 микрона, которая справлялась с бактериями и паразитами лучше угля. Ранние версии LifeStraw не защищали от тяжёлых металлов и вирусов, но обновлённый LifeStraw Flex смог отфильтровать и их. Разные версии LifeStraw имеют ресурс от 1800 до 4000 литров и стоимость от $19,95.
Пучок тонких трубочек — это и есть мембранная фильтрующая система LifeStraw. Точно такая же, как на мембранных фильтрах московских очистных сооружений. Источник: YouTube
Сейчас в продаже можно найти множество туристических бутылок и трубок с фильтрами, однако, стоит обращать внимание на фильтрующий элемент. Если в описании упоминается только уголь, не стоит рисковать, набирая воду из луж и стоячих водоёмов — ограничьтесь водопроводной водой. Уголь дезодорирует воду, убирает тяжёлые металлы и хлор, но пропускает вирусы и бактерии.
Сколько стоит очистка воды
Научно-техническая магия по превращению миллионов тонн отходов в воду звучит здорово, но сколько стоит такой сложный процесс? В открытом бюджете Москвы на сбор, удаление отходов и очистку сточных вод выделено около 900 млн. рублей в год, и это только обеспечение работы уже действующей инфраструктуры. А затраты на обновление и строительство новых сооружений могут исчисляться миллиардами.
Это при том, что меры эффективного использования и экономии позволили снизить траты воды даже в Москве, хотя население столицы за 20 лет выросло на треть. По данным всё того же Мосводоканала, в 2018 году москвичи тратили около 3 млн кубометров воды. Если в 1995 году каждый житель города сливал в канализацию порядка 450 литров в день, то теперь около 202 литров.
Важен и тот факт, что немалые деньги при очистке воды уходят на энергоснабжение. В США, к примеру, это 4% всей потребляемой электроэнергии.
Можно ли дешевле?
Если под рукой у предприятий водоснабжения нет дешёвых и экологически безопасных (редкое сочетание) источников энергии, то придётся обходиться тем, что есть, то есть использовать местные энергокомпании и платить им по установленным тарифам. Некоторую экономию в перспективе может дать обновление оборудования станции, но для этого требуются серьёзные инвестиции. Остаётся один путь: повысить эффективность энергопотребления, не снижая качества очистки.
Для Японии энергозатратность очистки воды тоже стала проблемой — на это уходит 0,7% электроэнергии страны, а электричество на острове значительно дороже российского. Юкио Хираока, главный специалист подразделения Water & Environmental Systems в Toshiba Infrastructure Systems & Solutions Corporation, предложил идею динамического изменения воздушного потока для аэрации воды в течение суток. На аэрацию, необходимую для жизнедеятельности бактерий, приходится до 60% электроэнергии очистных сооружений, однако поток стоков меняется в зависимости от времени дня — в утренние и вечерние часы больше, ночью новых стоков почти нет, излишняя аэрация уже очищенной воды ничего не даст. А значит, вместо постоянного аэрирования на одной мощности, можно менять подачу воздуха, сохраняя эффективность очистки воды.
Система аэрации с надстройкой от Toshiba. Источник: Toshiba
Для определения качества воды используется маркер NH4-N, количество которого говорит о готовности стоков к дальнейшей очистке. Основываясь на этом факте, Toshiba создала сенсор, который проверяет концентрацию NH4-N и количество растворенного в воде кислорода. Специальный софт считывает показания датчика и при необходимости «подкручивает вентиль», прекращая бессмысленную избыточную аэрацию.
Разработка Toshiba снизила воздушный поток на 10,3%, что позволило окупить её чуть больше, чем за два года и впоследствии снизить затраты на очистку воды за счёт уменьшения потребления электричества воздушными насосами. Решение Toshiba не требует переоснащения очистных сооружений — это лишь сенсор, компьютер и ПО, но в случае применения решения в масштабах целой страны, например, России, экономия на очистке воды будет исчисляться миллиардами рублей.
Источник
Какой должна быть питьевая вода — Часть 1
Какой должна быть вода, которую мы пьем? На этот вопрос всякий ответит, не задумываясь: «Чистой». О том, что это значит на самом деле и о многом другом мы расскажем в этом материале.
Вода, она же оксид водорода — самая распространенная жидкость на поверхности планеты. Именно она считается формальным маркером жизни — например, наибольший интерес для астрономов представляют именно экзопланеты, которые располагаются в так называемой потенциально обитаемой зоне. Это узкий интервал расстояний от звезды, при попадании орбиты в который на поверхности планеты может быть вода в жидком состоянии. Это легко объяснимо: подавляющее большинство обменных процессов в тканях и клетках протекают в водной среде.
Что значит чистая вода?
Вопрос о чистоте воды — вопрос, в первую очередь, терминологии. Например, химически чистое вещество, с точки зрения теории, — вещество, состоящее из молекул одного вида. На практике обычно это означает, что никакими существующими методами химического анализа в нем нельзя найти примеси. Но так как химической лаборатории под рукой обычно не бывает, чистота определяется из других соображений.
Самое простое, бытовое, это посмотреть на цвет и прозрачность воды. Любая взвесь выдаст наличие нерастворимых примесей даже невооруженному глазу. Прозрачная, но окрашенная вода говорит о наличии растворимых примесей, поглощающих определенные цвета из солнечного спектра (кстати, эта оценка на глаз тоже используется при анализе воды в лаборатории: мутность и поглощение света измеряют специальными методами — турбидиметрией и оптической спектрометрией соответственно).
Второе — это понюхать воду. У чистой воды нет запаха, так как она является довольно устойчивым оксидом и не вступает во взаимодействие с рецепторами, которые отвечают за запах. Наличие резкого запаха, как это ни банально, обычно означает наличие некоторых примесей, которые за этот запах отвечают.
Третье — это попробовать воду на вкус. Вообще говоря, вкус — это реакция соответствующих рецепторов на определенные химические соединения. Например, соленый вкус — это реакция определенных рецепторов на ионы натрия. Рецепторов для идентификации воды, вообще говоря, у человека нет (есть мнение, что это было полезно в ходе эволюции), но есть несколько гипотез , которые позволяют объяснить, почему некое ощущение вкуса воды возникает. Если коротко, оно связано с тем, что рецепторы языка адаптируются к вкусу нашей слюны так, чтобы мы его не ощущали постоянно. Попадание воды меняет концентрацию слюны, то есть среду, в которой находятся рецепторы, что и вызывает похожие на вкус ощущения от воды. При этом абсолютно чистая вода, скорее всего, будет восприниматься как слегка горьковатая.
Мы даже не начинали перечислять десятки других видов примесей, которые могут присутствовать в воде, но примерное представление об идеально чистой воде получили: прозрачная, бесцветная, без вкуса и запаха. Возникает следующий закономерный вопрос: можно ли такую воду пить?
Можно ли пить совсем чистую воду?
Можно, но однозначной рекомендации пить обессоленную воду (то есть воду, из которой удалены все соли) вы не найдете, пусть вопрос о ее общей пользе для здоровья и остается открытым. Среди отчетов Всемирной организации здравоохранения можно найти некоторые общие выводы на этот счет. Несмотря на то, что обессоленная вода ни в коем случае не является ядом и не может существенно навредить организму (как вас могли пугать в школе, например), исследователи по большей части рекомендуют реминерализацию воды после ее полной очистки.
Почему так происходит? Потому, что соли (которые в растворе диссоциируют на ионы натрия, калия, хлора и других элементов) придают воде те свойства, без которых в нашем организме будут невозможны многие процессы. Скажем, важным элементом клеточных мембран являются ионные каналы — это каналы, по которым могут двигаться строго определенные ионы. Например, калиевый канал не пропустит ионы натрия, и наоборот. Благодаря наличию таких каналов ионные составы внутри и снаружи клеток несколько отличаются.
Более того, концентрация ионов снаружи и внутри должна лежать в строго определенном диапазоне, только тогда все сложные процессы, протекающие на мембране (основном «органе связи» клетки с ее окружением) будут проходить так, как надо. Нарушение солевого баланса — процесс медленный и поначалу малозаметный — может привести к серьезным последствиям. Поскольку в ходе работы выделительной системы соли вымываются из организма естественным образом, их запас приходится восполнять. Большая часть солей в наш организм поступает с пищей, однако в случае кальция и магния вода является одним из важных источников, предоставляя до 25 процентов от общего потребления этих элементов.
Так где взять воду для питья?
Существенная часть плохих, то есть вредных, примесей можно условно поделить на химические и биологические (есть еще органолептические и радиологические, но про них мы говорить не будем). Первые, вероятно, мало заботили людей в предшествующие века, так как в отсутствие какой-либо химической промышленности заражать водоемы было просто нечем (хотя бывают неприятные исключения вроде водных источников Бангладеш, в которых содержатся, среди прочего, повышенные концентрации мышьяка). А вот опасность биологического заражения существовала всегда.
Долгое время борьба с биологическими загрязнениями велась при помощи эмпирических методов. Например, научившись термически обрабатывать пищу, люди научились и кипятить воду. Только лишь в середине XIX века Луи Пастер доказал, что кипячение уничтожает большинство микроорганизмов. Для обеззараживания воды и других напитков использовали и другие средства. Так, хмель — неотъемлемую составляющую современного пива, — еще в древности стали добавлять в сусло именно потому, что он обладает бактерицидными свойствами. Сам факт бактерицидности выяснился позже, но пивовары замечали, что добавление хмеля снижало риск того, что пиво скиснет.
Современные методы стерилизации воды пошли значительно дальше. Поскольку кипятить всю водопроводную воду было бы крайне затратно, применяют другие методы: например, хлорирование, озонирование или кварцевание, то есть облучение воды ультрафиолетом. Последние два метода уступают хлорированию, но зато практически не оставляют после себя «следов», что делает их более безопасными. Хлорирование же предполагает добавку к воде хлорсодержащих примесей, например, хлорноватистой кислоты или ее солей — гипохлоритов, которые со временем приводят к образованию атомарного кислорода. Он в итоге и стерилизует воду, то есть убивает содержащиеся в ней микроорганизмы. В целом можно сказать, что вода, прошедшая водоподготовку лишается абсолютного большинства биологических примесей, так что за эту сторону можно не переживать.
Современным людям, в отличие от предков, приходится иметь дело и с химическими загрязнениями. Необходимость предварительно очищать воду и положило начало такой технологии, как водоподготовка. В России первые станции водоочистки стали появляться с развитием водопроводных и канализационных сетей в крупных городах. В Москве, например, водопровод открыли в 1804 году. Поскольку воду тогда брали из ключей в районе современных Мытищ, дополнительная ее очистка не требовалась. Только через 100 лет, в 1903 году, была построена Рублевская водопроводная станция, оснащенная аппаратурой для водоподготовки по «английской» системе: воду отстаивали для удаления крупнозернистых примесей, а затем пропускали через песчаные фильтры.
Продолжение читайте во второй части.
Источник