- Вода: электропроводность и теплопроводность. Единицы измерения электропроводности воды
- Вода как вещество
- Свойства воды
- Вода, как проводник электроэнергии
- Измерение электропроводности воды
- Сименс
- Теплопроводность воды
- Плотность воды
- Что такое окислительно-восстановительные свойства воды
- С чем вода способна реагировать
- Есть ли вода где-либо еще, кроме Земли?
- Как используют тепло- и электропроводность воды в практических целях
- Заключение
- Диэлектрические свойства воды и льда
- Диэлектрические свойства воды и льда
Вода: электропроводность и теплопроводность. Единицы измерения электропроводности воды
Кто знает формулу воды еще со времен школьной поры? Конечно же, все. Вероятно, что из всего курса химии у многих, кто потом не изучает ее специализированно, только и остается знание того, что обозначает формула H2O. Но сейчас мы максимально подробно и глубоко постараемся разобраться, что такое вода? Какие ее главные свойства и почему именно без нее жизнь на планете Земля невозможна.
Вода как вещество
Молекула воды, как мы знаем, состоит из одного атома кислорода и двух атомов водорода. Ее формула записывается так: H2O. Данное вещество может иметь три состояния: твердое — в виде льда, газообразное — в виде пара, и жидкое — как субстанция без цвета, вкуса и запаха. Кстати, это единственное вещество на планете, которое может существовать во всех трех состояниях одновременно в естественных условиях. Например: на полюсах Земли — лед, в океанах — вода, а испарения под солнечными лучами — это пар. В этом смысле вода аномальна.
Еще вода — это самое распространенное вещество на нашей планете. Она покрывает поверхность планеты Земля почти на семьдесят процентов — это и океаны, и многочисленные реки с озерами, и ледники. Большая часть воды на планете соленая. Она непригодна для питья и для ведения сельского хозяйства. Пресная вода составляет всего два с половиной процента от всего количества воды на планете.
Вода — это очень сильный и качественный растворитель. Благодаря этому химические реакции в воде проходят с огромной скоростью. Это же ее свойство влияет на обмен веществ в человеческом организме. Общеизвестный факт, что тело взрослого человека на семьдесят процентов состоит из воды. У ребенка этот процент еще выше. К старости этот показатель падает с семидесяти до шестидесяти процентов. Кстати, эта особенность воды наглядно демонстрирует, что основой жизни человека есть именно она. Чем воды в организме больше — тем он здоровее, активнее и моложе. Потому ученые и медики всех стран неустанно твердят, что пить нужно много. Именно воду в чистом виде, а не заменители в виде чая, кофе или других напитков.
Вода формирует климат на планете, и это не преувеличение. Теплые течения в океане обогревают целые континенты. Это происходит за счет того, что вода поглощает очень много солнечного тепла, а потом отдает его, когда начинает остывать. Так она регулирует температуру на планете. Многие ученые говорят, что Земля давно бы остыла и стала камнем, если бы не наличие такого количества воды на зеленой планете.
Свойства воды
У воды есть много очень интересных свойств.
Например, вода — это самое подвижное вещество после воздуха. Из школьного курса многие, наверняка, помнят такое понятие, как круговорот воды в природе. Например: ручеек испаряется под воздействием прямых солнечных лучей, превращается в водяной пар. Далее, этот пар посредством ветра, переносится куда-либо, собирается в облака, а то и в грозовые тучи и выпадает в горах в виде снега, града или дождя. Далее, с гор ручеек вновь сбегает вниз, частично испаряясь. И так — по кругу — цикл повторяется миллионы раз.
Также у воды очень высокая теплоемкость. Именно из-за этого водоемы, тем более океаны, очень медленно остывают при переходе от теплого сезона или времени суток к холодному. И наоборот, при повышении температуры воздуха вода очень медленно нагревается. За счет этого, как и упоминалось выше, вода стабилизирует температуру воздуха на всей нашей планете.
После ртути вода обладает самым высоким значением поверхностного натяжения. Нельзя не заметить, что случайно пролитая на ровной поверхности капля иногда становится внушительным пятнышком. В этом проявляется тягучесть воды. Еще одно свойство проявляется у нее при понижении температуры до четырех градусов. Как только вода остывает до этой отметки, она становится легче. Поэтому лед всегда плавает на поверхности воды и застывает корочкой, покрывая собой реки и озера. Благодаря этому в водоемах, замерзающих зимой, не вымерзает рыба.
Вода, как проводник электроэнергии
Вначале стоит узнать о том, что такое электропроводность (воды в том числе). Электропроводность — это способность какого-либо вещества проводить через себя электрический ток. Соответственно, электропроводность воды — это возможность воды проводить ток. Эта способность непосредственно зависит от количества солей и иных примесей в жидкости. Например, электропроводность дистиллированной воды почти сведена к минимуму из-за того, что такая вода очищена от различных добавок, которые так нужны для хорошей электропроводности. Отличный проводник тока — это вода морская, где концентрация солей очень велика. Еще электропроводность зависит от температуры воды. Чем значение температуры выше — тем большая электропроводность у воды. Эта закономерность выявлена благодаря множественным опытам ученых-физиков.
Измерение электропроводности воды
Есть такой термин — кондуктометрия. Так называют один из методов электрохимического анализа, основанного на электрической проводимости растворов. Применяют этот метод для определения концентрации в растворах солей или кислот, а также для контроля состава некоторых промышленных растворов. Вода обладает амфотерными свойствами. То есть в зависимости от условий она способна проявлять как кислотные, так и основные свойства — выступать и в роли кислоты, и в роли основания.
Прибор, который используют для этого анализа, имеет очень сходное название — кондуктометр. С помощью кондуктометра измеряется электропроводность электролитов, находящихся в растворе, анализ которого ведется. Пожалуй, стоит объяснить еще один термин — электролит. Это вещество, которое при растворении или плавлении распадается на ионы, за счет чего впоследствии проводится электрический ток. Ион — это электрически заряженная частица. Собственно, кондуктометр, взяв за основу определенные единицы электропроводности воды, определяет ее удельную электропроводность. То есть он определяет электропроводность конкретного объема воды, взятого за начальную единицу.
Еще до начала семидесятых годов прошлого столетия для обозначения проводимости электричества использовали единицу измерения «мо», это была производная от другой величины — Ома, являющейся основной единицей сопротивления. Электропроводимость — это величина, обратно пропорциональная сопротивлению. Сейчас же она измеряется в Сименсах. Получила свое название данная величина в честь ученого-физика из Германии — Вернера фон Сименса.
Сименс
Сименс (обозначаться может как См, так и S) — это величина, обратная Ому, являющаяся единицей измерения электрической проводимости. Один См равен электрической проводимости любого проводника, сопротивление которого равно 1 Ом. Выражается Сименс через формулу:
- 1 См = 1 : Ом = А : В = кг −1 ·м −2 ·с³А², где
А — ампер,
В — вольт.
Теплопроводность воды
Теперь поговорим о том, что такое теплопроводность. Теплопроводность — это способность какого-либо вещества переносить тепловую энергию. Суть явления заключается в том, что кинетическая энергия атомов и молекул, что определяют температуру данного тела или вещества, передается другому телу или веществу при их взаимодействии. Иначе говоря, теплопроводность — это теплообмен между телами, веществами, а также между телом и веществом.
Теплопроводность у воды также очень высока. Люди ежедневно используют это свойство воды, сами того не замечая. Например, наливая холодную воду в тару и остужая в ней напитки или продукты. Холодная вода забирает тепло у бутылки, контейнера, взамен отдавая холод, возможна и обратная реакция.
Теперь это же явление легко можно представить в масштабе планеты. Океан нагревается в течение лета, а потом — с наступлением холодов, медленно остывает и отдает свое тепло воздуху, тем самым обогревая материки. Остыв за зиму, океан начинает очень медленно нагреваться по сравнению с землей и отдает свою прохладу изнывающим от летнего солнца материкам.
Плотность воды
Выше рассказывалось о том, что рыба живет зимой в водоеме благодаря тому, что вода застывает корочкой по всей их поверхности. Мы знаем, что в лед вода начинает превращаться при температуре в ноль градусов. Из-за того, что плотность воды больше, чем плотность льда, лед всплывает и застывает по поверхности.
Что такое окислительно-восстановительные свойства воды
Также вода при разных условиях способна быть и окислителем, и восстановителем. То есть вода, отдавая свои электроны, заряжается положительно и окисляется. Или же приобретает электроны и заряжается отрицательно, значит, восстанавливается. В первом случае вода окисляется и называется мертвой. Она обладает очень мощными бактерицидными свойствами, только вот пить ее не надо. Во втором случае вода живая. Она бодрит, стимулирует организм на восстановление, несет энергию клеткам. Разница между этими двумя свойствами воды выражается в термине «окислительно-восстановительный потенциал».
С чем вода способна реагировать
Вода способна реагировать почти со всеми веществами, которые существуют на Земле. Единственное, что для возникновения этих реакций нужно обеспечить подходящую температуру и микроклимат.
Например, при комнатной температуре вода отлично реагирует с такими металлами, как натрий, калий, барий — их называют активными. С галогенами — это фтор, хлор. При нагревании вода отлично реагирует с железом, магнием, углем, метаном.
При помощи различных катализаторов вода вступает в реакцию с амидами, эфирами карбоновых кислот. Катализатор — это вещество, словно бы подталкивающее компоненты к взаимной реакции, ускоряющее ее.
Есть ли вода где-либо еще, кроме Земли?
Пока ни на одной планете Солнечной системы, кроме Земли, воды не обнаружено. Да, предполагают о ее присутствии на спутниках таких планет-гигантов, как Юпитер, Сатурн, Нептун и Уран, но пока точных данных у ученых нет. Существует еще одна гипотеза, пока не проверенная окончательно, о подземных водах на планете Марс и на спутнике Земли — Луне. Касательно Марса вообще выдвинуто ряд теорий о том, что когда-то на этой планете был океан, и его возможная модель даже проектировалась учеными.
Вне Солнечной системы существует множество больших и малых планет, где, по догадкам ученых, может быть вода. Но пока нет ни малейшей возможности убедиться в этом наверняка.
Как используют тепло- и электропроводность воды в практических целях
Ввиду того, что вода обладает высоким значением теплоемкости, ее используют в теплотрассах в качестве теплоносителя. Она обеспечивает передачу тепла от производителя к потребителю. Как отличный теплоноситель воду используют и многие атомные электростанции.
В медицине лед используют для охлаждения, а пар — для дезинфекции. Так же лед используют в системе общественного питания.
Во многих ядерных реакторах воду используют как замедлитель, для успешного протекания цепной ядерной реакции.
Воду под давлением используют для раскалывания, проламывания и даже для резки горных пород. Это активно используется при строительстве туннелей, подземных помещений, складов, метро.
Заключение
Из статьи следует, что вода по своим свойствам и функциям — самое незаменимое и поразительное вещество на Земле. Зависит ли жизнь человека или любого другого живого существа на Земле от воды? Безусловно, да. Способствует ли это вещество ведению научной деятельности человеком? Да. Обладает ли вода электропроводностью, теплопроводностью и иными полезными свойствами? Ответ тоже «да». Иное дело, что воды на Земле, а тем более воды чистой, все меньше и меньше. И наша задача — сохранить и обезопасить ее (а значит, и всех нас) от исчезновения.
Источник
Диэлектрические свойства воды и льда
Владислав Федотов:
Здравствуйте. Я студент первого курса электротехнической специальности и готовлю доклад на тему «Использование воды и льда как диэлектрика» хотелось бы узнать у вас возможно ли это вообще? И если да то хотелось бы узнать ваше мнение.
Основная электрическая характеристика любой среды — диэлектрическая проницаемость — в случае воды демонстрирует необычные для жидкости особенности. Она очень велика, для статических электрических полей она равна 81, в то время как для большинства других веществ она не превышает значения 10 (для льда – 3,25). Если на любое вещество воздействовать переменным электрическим полем, то диэлектрическая проницаемость перестанет быть постоянной величиной, а зависит от частоты приложенного поля, сильно уменьшаясь для высокочастотных полей. Но диэлектрическая проницаемость воды уменьшается не только в переменных во времени полях, но также и в пространственно переменных полях, т.е. вода является нелокально поляризующейся средой.
Большое значение диэлектрической проницаемости объясняется особенностями химического строения молекулы H2O. Большая величина статической диэлектрической проницаемости воды ε =81 связана с тем, что вода — сильно полярная жидкость и поэтому обладает мягкой ориентационной степенью свободы (т.е. вращения молекулярных диполей). Каждая молекула воды обладает значительным дипольным моментом. В отсутствие электрического поля диполи ориентированы случайным образом, и суммарное электрическое поле, создаваемое ими, равно нулю. Если воду поместить в электрическое поле, то диполи начнут переориентироваться так, чтобы ослабить приложенное поле. Такая картина наблюдается и в любой другой полярной жидкости, но вода благодаря большому значению дипольного момента молекул H2O способна очень сильно (в 80 раз) ослабить внешнее поле. Так реагирует вода на внешнее электрическое поле, если приложенное поле постоянно по времени и слабо меняется (или вообще не меняется) в пространстве, заполняемом водой. В переменных электрических полях диэлектрическая проницаемость воды уменьшается с ростом частоты приложенного поля, достигая значения 4-5 для частот больше 10 12 Гц. В 1929 г. П. Дебай предложил описывать реакцию воды на внешнее электрическое поле с помощью комплексной диэлектрической проницаемости:
где ω — частота внешнего электрического поля, i — мнимая единица, τ — характерное время релаксации, ε∞ ≈ 4÷5 — диэлектрическая проницаемость воды при максимально высокой частоте внешнего поля.
Хотя при выводе своей формулы Дебай использовал довольно искусственную модель структуры воды, это выражение хорошо соответствует экспериментальным данным и что с ростом частоты внешнего поля диэлектрическая проницаемость резко падает. Объяснением этому факту является то, что любые движения молекулы H2O ограничены водородными связями в ассоциатах. В переменных электрических полях молекулярные диполи стремятся отследить меняющееся поле, что возможно при небольших частотах поля. По мере увеличения частоты ориентироваться становится все труднее. В результате диполи перестают реагировать на внешнее поле. Диэлектрическая проницаемость в этом случае определяется лишь атомно-молекулярным перераспределения электрического заряда, который присущ всем веществам. Такие механизмы действуют в воде и в случае постоянных полей, но их вклад в общую величину диэлектрической проницаемости невелик, всего 4-5 единиц. Кроме этого вода обладает поверхностным отрицательным электрическим потенциалом, обусловленным накоплением на поверхности гидроксильных ионов HO — . Противоположно заряженные ионы гидроксония H3O + притягиваются к отрицательно заряженной поверхности воды, формируя двойной электрический слой. И хотя заряд скомпенсирован, теоретически это не может быть препятствием для проведения тока по поверхности.
Вода не содержащая примесей является диэлектриком. При нормальных условиях вода слабо диссоциирована и концентрация протонов (ионов гидроксония Н3О + ) и гидроксильных ионов ОН — составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.
Электропроводность — это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость природной воды зависит в основном от концентрации растворенных минеральных солей и температуры. Природные воды представляют в основном растворы смесей сильных электролитов. Минеральную часть воды составляют ионы Na + , K + , Ca 2+ , Cl — , SO4 2- , HCO3 — . Этими ионами и обуславливается электропроводность природных вод. Присутствие других ионов, например, Fe 3+ , Fe 2+ , Mn 2+ , Al 3+ , NO3 — , HPO4 — , H2PO4 — не сильно влияет на электропроводность, если эти ионы не содержатся в воде в значительных количествах. На достоверность оценки содержания минеральных солей по удельной электропроводности в большой степени влияют температура и неодинаковая электропроводимость различных солей. Нормируемые величины минерализации приблизительно соответствуют удельной электропроводности 2 мСм/см (1000 мг/дм3) и 3 мСм/см (1500 мг/дм3) в случае как хлоридной (в пересчете на NaCl), так и карбонатной (в пересчете на CaCO3) минерализации.
Удельная электропроводность воды — характеристика минерализации пресной воды (солености морской воды), измеряемая при помощи платиновых или стальных электродов, погружаемых в воду, через которые пропускается переменный ток частотой от 50 Гц (в маломинерализованной воде) до 2000 Гц и более (в соленой воде), путем измерения электрического сопротивления. Расчет У.э.в. ведется по формуле k = C
Рис. 1. Диаграмма Стиффа для изображения состава воды в продольных координатах.
Оконтуренные площади помогают быстро сравнивать результаты анализов.
Рис. 2. Трехлинейная диаграмма, предложенная Пайпером. Показана химическая характеристика морской воды (А) и питьевой воды (В) в процент-эквивалентах. Результаты каждого анализа представлены тремя точками: двумя на треугольных полях и одной на суммирующем поле-ромбе.
Удельная электрическая проводимость воды зависит от температуры, характера ионов и их концентрации. Обычно удельная электрическая проводимость воды дается для 25° С, так что она зависит только от концентрации и характера растворенных компонентов. Поскольку удельная электрическая проводимость измеряется очень быстро, по ней можно легко определить химический состав воды.
Среди распространенных типов природных вод при данной общей минерализации воды, содержащие бикарбонат и сульфат кальция, обычно имеют самую низкую проводимость, а воды, содержащие хлористый натрий, обладают наибольшей проводимостью. Общую минерализацию пресной воды в частях на миллион можно приблизительно определить, если величину ее удельной электрической проводимости в микромо умножить на 0,7. Однако наблюдается более точная зависимость между формой выражения минерализации воды в экв/млн и ее электропроводностью, выраженной в микромо. Для почти чистой воды, если разделить величину удельной электрической проводимости на 100, получим общую минерализацию воды в эквивалентах на 1 млн. с точностью до 5%. Для воды с минерализацией от 1 до 10 экв/млн точность полученной величины составляет около 15%. Считается, что обшая минерализация воды В, выраженная в эквивалентах на 1 млн., и ее удельная электрическая проводимость С связаны следующими эмпирическими зависимостями:
C = B(95,5-5,54 lg B), (3.4)
когда В > 10 с преобладанием аниона НСО — 3;
С = 123 В, 0,939 (3.6)
когда В>10 с преобладанием аниона Сl — ;
С = 101 В, 0,949 (3.7)
когда В > 10 с преобладанием аниона SO 2- 4
Рис. 3. Удельная электрическая проводимость водных растворов различных соединений. Влияние температуры на удельную электрическую проводимость воды особенно видно на примере, содержания NaCl.
Не менее замечательны и электрические свойства льда.
Во время низовых метелей крупные кристаллы льда заряжаются отрицательно, а более мелкая Снежная пыль — положительно. Свежевыпавший снег во всех случаях обнаруживает более значительную электризацию, чем уже слежавшийся. При взвихривании снежной пыли в воздухе может возникать объемный заряд до 1 -8 кулон м 3 . Особенно сильные электрические поля (до 100 в/см) наблюдаются во время снежных метелей в полярных и высокогорных областях, где за счет электризации антенн сухим снегом весьма усиливаются помехи радиосвязи — pppa.ru. Сталкиваясь с проводами линий телефонной или телеграфной связи, снежинки из метельных потоков передают им свой заряд. При хорошей изоляции от земли, заряд может накопиться такой большой, что в прилегающем воздухе возникнет коронный разряд.
Движение лавин в горах в безлунные ночи иногда сопровождается зеленовато-желтым свечением, благодаря чему лавины становятся видимыми. Обычно световые явления наблюдаются у лавин, которые движутся по снежной поверхности, и не наблюдаются у лавин, проносящихся по скалам. По-видимому, причиной свечения лавин является коронный электрический разряд наэлектризованных масс снега. На озерах Антарктики во время полярной ночи иногда возникает свечение при разламывании крупных масс озерного льда. Свечение это — результат электрического разряда, возникающего при разрушении льда.
Заряжение, кристаллов льда во время снежных метелей можно, объяснить за счет обмена зарядом при контакте между собой плоской грани одного кристалла льда с острым выступом другого. Допустим, что выступ на плоской грани кристалла имеет форму цилиндра — pppa.ru. Тогда электрическое поле, создаваемое периферическими электронами поверхности твердого тела в верхней части выступа будет в 2 раза больше, чем над плоской поверхностью. Если над первым выступом — цилиндром расположить второй с вдвое меньшим радиусом, над вторым — третий и т.д. вплоть до последнего выступа атомных размеров, то у конца последнего выступа электрическое поле окажется примерно в 10 раз большим, чем над плоской поверхностью.
Таким образом при контакте выступа одного кристалла льда с плоской поверхностью другого поверхностным электрическим полем электроны будут перегоняться с выступа на плоскость. Так как у мелких кристаллов относительное количество выступов больше, чем у крупных, то при контакте первые будут заряжаться положительно, а вторые отрицательно.
В поле силы тяжести затем происходит разделение зарядов. Более тяжелые кристаллы с отрицательным зарядом опускаются вниз, а более легкая снежная пыль с положительным зарядом остается взвешенной в воздухе. Таким образом во время снежных метелей у земной поверхности могут возникать сильные электрические поля, а вблизи зарядившихся от снега наземных объектов — коронные и даже искровые электрические разряды.
Электропроводность льда и снега весьма мала. Она во много раз меньше электропроводности воды. Различные примеси оказывают существенное влияние на электропроводность воды и почти не изменяют электропроводности льда. Электропроводность химически чистой воды обусловлена частичной диссоциацией молекулы воды на ионы Н + и ОН –. Основное значение для электропроводности и воды и льда имеют перемещения ионов Н + ( протонные перескоки ).
Величина электропроводности и ее экспоненциально быстрое возрастание с повышением температуры резко отличают лед от металлических проводников и ставят его в один ряд с полупроводниками. Обычно лед бывает очень чист химически, даже если растет из грязной воды или раствора (вспомните чистые прозрачные льдинки в грязной луже). Это обусловлено низкой растворимостью примесей в структуре льда. В результате при замерзании примеси оттесняются на фронте кристаллизации в жидкость и не входят в структуру льда. Именно поэтому свежевыпавший снег всегда белый, а вода из него отличается исключительной чистотой. Природа мудро предусмотрела гигантскую очистительную станцию для воды в масштабе всей атмосферы Земли. Поэтому рассчитывать на большую примесную проводимость (как, например, в легированном кремнии) во льду не приходится. Но в нем нет и свободных электронов, как в металлах. Лишь в 50-е годы XX века было установлено, что носителями заряда во льду являются неупорядоченные протоны, то есть лед является протонным полупроводником.
Упоминавшиеся выше перескоки протонов создают в структуре льда дефекты двух типов: ионные и ориентационные. В первом случае перескок протона происходит вдоль водородной связи от одной молекулы H2O к другой, в результате чего образуется пара ионных дефектов H3O + и ОН — , а во втором — на соседнюю водородную связь в одной молекуле Н2О, в результате чего возникает пара ориентационных дефектов, получивших название Lи D-дефектов.
Ниже показаны диэлектрические свойства воды и льда:
Диэлектрические свойства воды и льда
Численная модель диэлектрических свойств льда позволяет осуществить расчет показателя преломления и показателя поглощения электромагнитных волн в диапазоне частот от 0 до 6.7·10 15 Гц.
Показатель преломления электромагнитных волн определяется выражением:
а показатель поглощения электромагнитных волн определяется выражением:
показатель преломления электромагнитных волн;
показатель поглощения электромагнитных волн;
действительная часть комплексной диэлектрической проницаемости;
мнимая часть комплексной диэлектрической проницаемости.
В диапазоне частот от 0 до 3.49·10 7 Гц значения относительной диэлектрической проницаемости рассчитываются с помощью теории Дебая, в диапазоне от 3.49·10 7 до 6.66·10 15 Гц — по табличным данным, полученным в результате натурных экспериментов. Значение в соответствии с теорией Дебая рассчитывается по формуле:
действительная часть комплексной диэлектрической проницаемости;
относительная диэлектрическая проницаемость на высоких частотах, для льда равная 3.1;
относительная диэлектрическая проницаемость на низких частотах;
частота электромагнитного поля, Гц;
время релаксации диэлектрической проницаемости, с.
Значение в соответствии с теорией Дебая рассчитывается по формуле:
Зависимость относительной диэлектрической проницаемости льда в статическом пределе от температуры может быть рассчитана по формуле, полученной нами в результате аппроксимации табличных данных работы [22]:
относительная диэлектрическая проницаемость льда при постоянном электрическом поле.
В диапазоне температур от 233 до 273 К (от -40 до 0 °С) относительная ошибка расчета по формуле не превышает 1.5 %.
Время релаксации диэлектрической проницаемости льда может быть рассчитано по формуле, которая аппроксимирует табличные данные работы [22]:
В диапазоне температур от 233 до 273 К (от -40 до 0 °С) относительная ошибка расчета по формуле не превышает 1.5 %.
В диапазоне частот электромагнитного излучения от 3.49·10 7 до 6.66·10 15 Гц модель возвращает значение, полученное путем интерполяции табличных данных [23] о показателях преломления и поглощения льда. Табличные данные соответствуют диапазону температуры от 213.16 до 272.16 K (от -60 до -1 °C).
Для целей обеспечения гладкости функций действительной и мнимой частей относительной диэлектрической проницаемости льда на частоте 3.49·10 7 Гц (для льда), где стыкуется модель Дебая и табличные данные, используются следующие уточняющие формулы для относительной диэлектрической проницаемости в статическом пределе.
Для действительной части комплексной относительной диэлектрической проницаемости:
и для мнимой части комплексной относительной диэлектрической проницаемости:
относительная диэлектрическая проницаемость на высоких частотах;
действительная часть комплексной относительной диэлектрической проницаемости на частоте f;
мнимая часть комплексной относительной диэлектрической проницаемости на частоте f;
относительная диэлектрическая проницаемость на низких частотах;
частота электромагнитного поля, Гц;
время релаксации диэлектрической проницаемости, с.
Результаты численного расчета значений относительной диэлектрической проницаемости льда в зависимости от частоты электромагнитного излучения при двух значениях температуры представлены в таблице. На рисунках 1 — 4 представлены результаты расчета зависимости от частоты электромагнитных волн показателя преломления, показателя поглощения, действительной части комплексной диэлектрической проницаемости, мнимой части комплексной диэлектрической проницаемости воды и льда.
Таблица — Зависимость комплексной относительной диэлектрической проницаемости льда от частоты электромагнитных волн при двух значениях температуры
Рисунок 1 — Зависимость показателя преломления воды и льда от частоты электромагнитных волн
Рисунок 2 — Зависимость показателя поглощения воды и льда от частоты электромагнитных волн
Рисунок 3 — Зависимость действительной части относительной диэлектрической проницаемости воды и льда от частоты электромагнитных волн
Рисунок 4 — Зависимость мнимой части относительной диэлектрической проницаемости воды и льда от частоты электромагнитных волн
Здравствуйте
С интересом ознакомился с результатами ваших измерений
Обратил внимание на следующее обстоятельство
Для воды вы указали значение диэлектр константы — 81
Для льда в указанной вами таблице — 102 или 92
Однако на Рисунок 3 значения при частоте равной нулю график для воды выше графика для льда
Это обстоятельство имеет какое-то объяснение или оно носит случайный характер?
Владимир
Про замерзание льда и его полупроводниковость :Да обычно лёд при замерзании вроде как и чист ,но это увы явно не всегда происходит при чём явно не всегда. Очень часто в ледяную лужицу не глубокую куда нападали листики деревьев вмерзают и листики эти и грязь тоже превращаясь в лёд . Поэтому лёд природный это не полупроводник ,а именно проводник электрического тока, а уже чистый лёд (среднестатистически-чистый лёд) может быть и полупроводником. Да и это логично потому что раз льдины в антарктических озёрах сталкиваясь и раскалываясь производят электрические заряды и пыль снежная в воздухе (правда в минусовом воздухе) то и простой лёд природный т. Е. всегда сколько нибудь загрязнённый примесями должен проводить электричество (хотя у него может иметься огромное сопротивление электрическое тоже). Т. е. Мне кажется можно подобрать загрязнители воды специальные которые при замерзании и вмёрзнут в воду и сделают этот лёд мене эл. Сопротивленческим и хорошо проводимым эл. Ток.
Подскажите, как рассчитать или где узнать величину диэлектрической проницаемости натриевого жидкого стекла при 100 С.
Источник