Почему торричелли не использовал воду

Опыт Торричелли для измерения атмосферного давления — доказательство и суть

Опыт Торричелли, доказывающий его существование, был максимально прост, но в то же время уникален и повлек за собой не только доказательство теории об атмосфере и ее давлении, но и изобретение барометра и открытие вакуума.

Достижения Торричелли

Эванджелиста Торричелли — ученый физик и математик, истинный энтузиаст, автор многочисленных трудов и открытий. Итальянец, родом из Флоренции. Был близок с Бенедетто Кастелли, который в свою очередь был другом и учеником Галилео Галилея. Под руководством Кастелли он начал изучать математику. Впоследствии, вдохновленный многими трудами Галилея и опираясь на содержание его многочисленных трактатов, он развивал свой гений и стал преемником Галилео.

Торричелли сделал много открытий в математике, механике и физике. Среди них:

  • развил тему «метод неделимых»;
  • открыл так называемую точку Торричелли в плоскости треугольника;
  • описал принцип движения центров тяжести;
  • проводил многочисленные исследования, которые заложили основу принципов гидравлики;
  • изобретатель микроскопов, линз для телескопов;
  • изобрел ртутный барометр;
  • доказал существование атмосферного давления;
  • открыл пустоту Торричелли, или вакуум.

Торричелли прожил интересную, полную профессиональных открытий жизнь и умер на родине, во Флоренции в 1647 году.

Атмосферное давление и его значимость

Атмосферное давление — невероятно важная и нужная человечеству величина. От показателей этого параметра зависят погодные условия: если давление увеличивается — это предвещает хорошую теплую погоду без осадков, низкую влажность, если понижается — высок процент того, что погода испортится, будет облачно и высока вероятность осадков.

Читайте также:  Вода за место бензина

Поэтому его показатели, дающие возможность прогнозировать погоду, так важны для работников науки и медицины, для летчиков и полярников.

Наука выделяет пять слоев атмосферы: стропо-, страто-, мезо-, термо-, экзосферы. Чем дальше от земли, тем менее изучен слой. По мере удаленности от земли температура в слоях снижается, однако далее начинает повышаться по мере приближения к солнцу.

Атмосфера состоит из воздуха. Ученый стремился доказать, что воздух оказывает давление на все предметы, какие оказываются под его воздействием, и на человека в том числе. И по мере изменения слоев воздуха меняется и его плотность, и, соответственно, само атмосферное давление. Опыт Торричелли, связанный с этим явлением, произвел революцию в мире науки.

Суть опыта ученого

Торричелли был вдохновлен своим видением того, что другие не замечали. Он отчаянно верил в теорию Галилео Галилея, что воздух весом и стремился выявить, что он оказывает прямое влияние на предметы. Для доказательства своей правоты в XVII веке он поставил опыт.

Для проведения опыта он взял стеклянную трубку (приблизительно метр длиной), с одной стороны она была запаяна. Торричелли наполнил трубку (которая впоследствии получила название трубки Торричелли) ртутью и, перевернув ее, опустил ее в чашу также со ртутью. Некоторая часть вещества перетекла в емкость, но большая часть оставалась в емкости. Что же не давало всему веществу перетечь в емкость? Давление атмосферы, которое воздействовало на ртуть в самой чаше, тем самым создавая отпор проникновению ртути из трубки.

Выходит, что атмосферное давление равно тому показателю, который показывает ртуть в столбце трубки, ведь именно с этой силой атмосфера давит на жидкость в емкости. Именно поэтому принято измерять атмосферное давление в миллиметрах ртутного столба. Вот в чем заключался опыт Торричелли, кратко говоря. Таким образом, была выведена следующая краткая формула:

АД равно давлению столба ртути в трубке.

pатм=pртути=ρgh=13600 ⋅ 9.8 ⋅ 0.76=101293 (Па)

Этот же опыт простимулировал изобретение измерительного прибора — ртутного барометра. Сейчас существуют более современные и безопасные приборы для измерения давления атмосферы, так как пары ртути крайне опасны. Новые же изобретения пригодны к применению без последствий для человеческого здоровья и без вреда для окружающей среды.

В процессе своего эксперимента ученый неосознанно сделал еще одно открытие. Он открыл вакуум, который первоначально называли торричеллиевой пустотой. Та часть трубки, которая опустела, и была вакуумом. Хотя многие ученые придерживаются мнения о том, что на самом деле это был не вакуум, а пары ртути.

Подытоживая, можно выделить следующие достижения этого эксперимента:

  • доказательство существования атмосферного давления;
  • изобретение барометра;
  • открытие «торричеллиевой пустоты», или вакуума.

Сообщение о таком результативном опыте, который принес не одно открытие, а сразу три, несомненно, разделил мир науки на до и после.

Все эти данные и приборы, теперь уже модифицированные, по сей день приносят ежедневную пользу человечеству.

Источник

Почему торричелли не использовал воду

1. Почему нельзя рассчитывать давление воздуха по формуле?

Рассчитать атмосферное давление по формуле для вычисления давления столба жидкости нельзя.
Ведь точной границы у атмосферы нет (т.е. высота столба воздуха неизвестна), да и плотность воздуха с высотой меняется.

2. Как Торричелли измерил атмосферное давление?

В 17 веке итальянский ученый Эванджелиста Торричелли сумел иззмерить атмосферное давление.

Торричелли взял стеклянную трубку длиной около 1 м, запаянную с одного конца и наполнил ее ртутью.
Закрыл открытый конец трубки пальцем, перевернул ее и опустил этот конец трубки в чашку с ртутью.
Под поверхностью ртути он убрал палец с трубки.
Часть ртути из трубки вылилась в чашку, а часть осталась.
Высота столба ртути, оставшейся в трубке, была равна 760 мм.

Как это объяснить?
В перевернутой трубке над ртутью воздуха нет — безвоздушное пространство.
Давление воздуха на ртуть в чашке равно атмосферному давлению.

Давление в трубке на уровне аа1 создается только лишь весом столба ртути в трубке, так как в верхней части трубки над ртутью воздуха нет.
Таким образом давление столба ртути в трубке уравновешивается атмосферном давлением.
р атм = р ртути

Если измерить высоту столба ртути в трубке, то можно рассчитать давление, которое производит столб ртути в трубке.
Оно будет равно атмосферному давлению.

3. Как устроен прибор для измерения атмосферного давления?

Если к трубке с ртутью Торричелли, прикрепить шкалу, то получится ртутный барометр — прибор для измерения атмосферного давления.
При изменении атмосферного давления в природе высота столба ртути в трубке барометра будет меняться.

Если атмосферное давление уменьшится, то столб ртути в трубке Торричелли понизится.
Если атмосферное давление увеличится, то столб ртути в трубке Торричелли повысится.
То есть внешнее атмосферное давление регулирует высоту столба ртути в трубке.


4. Почему для уравновешивания давления атмосферы, высотой в десятков тысяч километров, достаточно столба ртути высотой всего 760 мм?

Плотность ртути очень велика по сравнению с плотностью воздуха.
В результате столб ртути высотой 760 мм создает такое же по величине давление, что и атмосфера Земли.

5. Почему атмосферное давление удерживает столб ртути в трубке, хотя действует на ртуть в чашке сверху вниз?

Ртуть — жидкость, а для жидкости действует закон Паскаля:
Жидкость передает оказываемое на нее давление одинаково во все точки жидкости и по всем направлениям.
Поэтому давление, равное атмосферному, подпирает столб ртути в трубке снизу.


6. Работал бы барометр, если бы верхний конец трубки был открыт?

Нет!
Тогда и на столб ртути в трубке, и на поверхность ртути в чашке действовало бы одинаковое атмосферное давление.
И под действием силы тяжести ртуть полностью выливалась бы из трубки в чашку.

7. Изменится ли высота столба ртути в барометре, если трубку опустить глубже в чашку со ртутью?

Нет!
А как это объяснить?
Рассмотрим левую трубку (на рисунке точка А находится на уровне нижнего края трубки).

На нижний край опущенной в ртуть трубки снизу вверх действует сумма давлений:
наружное атмосферное давление воздуха + весовое давление слоя воды над точкой А (оба давления по закону Паскаля передаются в любую точку жидкости во всех направлениях).
Давление ртути внутри трубки сверху вниз на уровне нижнего края — тоже сумма давлений:
давление «подводного » столба ртути в трубке + давление «надводного» столба ртути в трубке.
Весовое давление слоя воды над точкой А = давлению «подводного» столба ртути в трубке, так как у них одинаковая высота h1.
Эти давления при любой глубине погружения трубки уравновешивают друг друга, и их можно не учитывать.
Вывод:
Погружай — не погружай, только величина атмосферного давления будет влиять на высоту столба ртути в трубке барометра над ртутной поверхностью чашки!

8. Изменится ли показание барометра, если трубку барометра наклонить?

Если считать, что шкала барометра прикреплена к трубке и наклоняется вместе с ней, то показание барометра изменится!
А если шкала как была вертикальна, так и осталась, а трубка наклоняется отдельно, то не изменится!
В любом случае расстояние от уровня поверхности ртути в чашке до верхнего края ртути в наклоненной трубке останется прежним.

Почему?
При расчете давления, создаваемого наклонным столбом жидкости, можно мысленно разделить его на части.
По формуле подсчитать весовые давления, созданные отдельными слоями.
Применить закон Паскаля и прийти к выводу, что для расчета общего давления жидкости в наклонной трубке требуется не длина этой трубки, а расстояние между верхним и нижним уровнем жидкости.


9. В каких единицах измеряют атмосферное давление?

С помощью ртутного барометра можно измерять атмосферное давление высотой ртутного столба.
Тогда за единицу атмосферного давления можно принять 1 миллиметр ртутного столба (1 мм рт. ст.).

Но в системе СИ за единицу давления принят 1 Па (Паскаль).

Соотношение между этими единицами таково:

Давление столба ртути высотой 1 мм равно:

1 мм рт. ст. = 133,3 Па.

В сводках погоды сообщают, что атмосферное давление равно 760 мм рт.ст., это то же самое, что 1013 гПа (гектоПаскалей).
Изменения атмосферного давления связаны с изменением погоды, оно непостоянно, может увеличиваться и уменьшаться.


10. Водяной барометр Паскаля

В барометре Торричелли исползовалась ртуть.
Такие барометры, в которых исползуется жидкость, назвали жидкостными барометрами.

В 1646 году Блез Паскаль построил водяной барометр.

Так как вода имеет значительно меньшую плотность, Паскалю пришлось взять для своего барометра более длинную трубку.
Для того, чтобы показать атмосферное давление 760 мм рт. ст. трубка должна была иметь длину не менее 10,3 метра?

11. Что доказывает опыт Отто Герике?

В 1654 г. Отто Герике в г. Магдебурге с помощью своего знаменитого опыта подтвердил существование атмосферного давления.
Он выкачал воздух из полости между двумя сложенными вместе металлическими полушариями.
Атмосферное давление так сильно прижало полушария друг к другу, что их не могли разорвать восемь пар лошадей.

Источник

Почему Торричелли использовал именно ртуть в своем опыте?

Имя Торричелли вошло в историю физики как имя человека, впервые доказавшего существование атмосферного давления и сконструировавшего первый барометр. До середины XVII века считалось непререкаемым утверждение древнегреческого учёного Аристотеля о том, что вода поднимается за поршнем насоса потому, что «природа не терпит пустоты» . Однако при сооружении фонтанов во Флоренции обнаружилось, что засасываемая насосами вода не желает подниматься выше 34 футов.

Недоумевающие строители обратились за помощью к престарелому Галилею, который сострил, что, вероятно, природа перестает бояться пустоты на высоте более 34 футов, но все же предложил разобраться в этом своим ученикам — Торричелли и Вивиани. Трудно сказать, кто первым догадался, что высота поднятия жидкости за поршнем насоса должна быть тем меньше, чем больше её плотность.

Так как ртуть в 13 раз плотнее воды, то высота её поднятия за поршнем будет во столько же раз меньше.

Тем самым опыт получил возможность «перейти» со стройплощадки в лабораторию и был проведен Вивиани по инициативе Торричелли. Осмысливая результаты эксперимента, Торричелли делает два вывода: пространство над ртутью в трубке пусто (позже его назовут «торричеллиевой пустотой») , а ртуть не выливается из трубки обратно в сосуд потому, что атмосферный воздух давит на поверхность ртути в сосуде.
Из этого следовало, что воздух имеет вес. Это утверждение казалось настолько невероятным, что не сразу было принято учёными того времени.
Атмосферное давление и первый барометр
Опыт Торричелли

Опыты Торричелли заинтересовали многих ученых — его современников. Когда о них узнал Паскаль, он повторил их с разными жидкостями (маслом, вином и водой) .

Источник

Кратко об опыте Торричелли со ртутью и стеклянной трубкой

Каждый школьник старших классов, который интересуется физикой, может рассказать кратко об опыте Торричелли. Этот несложный эксперимент был поставлен итальянским ученым в эпоху, когда современная наука только зарождалась, и человечество еще не имело четких представлений о законах механики.

Биография ученого

Прежде чем говорить о сути эксперимента Торричелли, любопытно познакомиться с биографией этого известного ученого. Родился он в Италии в городе Флоренция в 1608 году. Родители возлагали с самого рождения большие надежды на их одаренного сына, поэтому назвали его именем с библейскими корнями — Эванджелиста.

В 1627 году в возрасте 19 лет он отправляется в Рим с целью изучения наук. В столице в течение 5 лет он был учеником Бенедетто Кателли (Benedetto Castelli). В 1632 году по просьбе своего учителя Торричелли берет сам Галилео Галилей в качестве своего помощника при выполнении различных научных экспериментов. Однако, с Галилеем Торричелли поработал немного, поскольку его новый учитель скончался, спустя 3 месяца, в 1633 году.

После смерти Галилея ученого приглашает герцог Фердинандо II Медичи в его родной город Флоренцию в качестве философа и математика Флоренской академии. Торричелли с радостью принял это предложение. Умер Эванджелиста в возрасте 39 лет (в 1647 году) от брюшного тифа.

Знаменитый эксперимент

Эванджелиста Торричелли вошел в историю как первый ученый, который получил математическое выражение для атмосферного давления. Измерения в опыте Торричелли привели к следующим результатам:

  1. Было доказано, что воздух создает давление на поверхность абсолютно любых предметов.
  2. Была измерена величина этого давления при помощи ртути.
  3. Создан первый прибор для измерения давления — ртутный барометр.
  4. Продемонстрирована простая возможность создания вакуума.

Описать эксперимент Торричелли легко.

Суть опыта

В 1643 году, работая в академии Флоренции, ученый поставил следующий опыт: он взял пустую стеклянную трубку длиной 1 метр, которая была запаяна лишь с одной стороны. Затем ученый заполнил ее ртутью и закрыл пальцем открытый конец. После этого он перевернул трубку, погрузил ее в сосуд, содержащий жидкую ртуть, и убрал палец. В этот момент Торричелли наблюдал, как столб жидкости уменьшается. К удивлению многих, и несмотря на то что один конец стеклянной трубки был погружен в жидкость и являлся открытым, вся ртуть не вытекла, а выставился определенный ее уровень.

Эксперимент итальянец проводил на высоте уровня моря, поэтому измеренная им высота столба ртути в трубке составила 76 см или 760 мм. Причем эта величина не изменялась, если наклоняли трубку под разными углами или использовали приборы разного диаметра. До настоящего времени значение 760 мм ртутного столба считается нормальным давлением.

Физические процессы

Для большинства людей остается непонятным, почему вся ртуть не вытекла из стеклянной трубки. Для того чтобы понять, в чем заключается опыт, с точки зрения физики, необходимо вспомнить принцип, что все текущие субстанции (жидкости и газы) передают оказываемое на них давление по всем направлениям одинаково. Причем жидкости не изменяют величину внешнего давления, поскольку являются несжимаемыми.

В опыте Торричелли со ртутью столб этой жидкости имеет некоторый вес, который создает давление на ограниченную диаметром трубки площадку. Это давление точно уравновешивается той же самой величиной, которую создает вся масса воздуха. Следует заметить, что уравновешиваются именно давления, а не веса, как иногда ошибочно говорят. Это умозаключение теоретически можно доказать, если провести следующую последовательность физико-математических рассуждений:

  1. Согласно определению, давление — это действующая на площадку сила. Для удобства использования всех формул следует физические величины представлять в единицах измерения международной системы СИ. Давление рассчитывается по следующей простой формуле: p = m*g/S. Здесь произведение массы тела m на ускорение свободного падения g является весом, S — площадь, на которую опирается тело.
  2. Объем ртути, которая заполняет стеклянную трубку, может быть вычислен таким образом: V = S*h, где h — высота столба, которая составляет 0,76 метра. Формула для V является типичной для цилиндра. Тогда давление ртути на дно сосуда может быть вычислено так: p = ρ*g*h*S/S = ρ*g*h, где ρ — плотность жидкости. Если обратиться к справочнику, то можно выписать ρ = 13534 кг/м 3 , g = 9,80665 м/с 2 . Теперь известны все величины, и можно рассчитать давление: p = ρ*g*h = 100869 Па. Уточнение плотности ртути для температуры +20 °C приводит к точной величине p = 101325 Па. Это давление равно одной атмосфере (1 атм.).
  3. Опустившись на некоторую величину относительно запаянного конца трубки, ртуть оставляет над собой свободное от воздуха пространство — это торричеллиева пустота, которая характеризуется достаточно высоким уровнем вакуума (определенная доля паров ртути и некоторых других газов в ней все же присутствует).

Проанализировав все физические процессы своего опыта, Эванджелиста Торричелли сделал следующий краткий вывод: «Мы живем на дне океана, состоящего из воздуха, который, как неопровержимо показывает опыт, обладает собственным весом». Стеклянная трубка со ртутью стала первым в истории барометром.

Величины измерения и изменение давления

Физическая величина, которая измеряется в ньютонах на квадратный метр, называется давлением. В системе СИ 1 Н/м 2 = 1 Па (Паскаль). Значение 1 Па является настолько маленьким, что в повседневной жизни оно практически не используется. Для этого применяются следующие единицы измерения:

  • 1 мм рт. ст. (миллиметр ртутного столба), который равен 1/760 атмосферы;
  • 1 тор = 1 мм рт. ст. — эта единица получила свое название в честь Торричелли;
  • 1 атм. = 101325 Па — нормальное давление атмосферы на поверхности планеты вблизи уровня моря;
  • 1 бар приблизительно равен 1 атм. — величина часто используется в технике.

Изменение атмосферного давления в опыте Торричелли можно обнаружить, если его провести ярким солнечным днем и в дождливую погоду. В первом случае оно будет выше 760 мм рт. ст., во втором — ниже этого значения. Этот факт послужил отправной точкой для развития измеряющих давление приборов (барометров) и метеорологии в целом.

Давление зависит не только от погоды, но и от высоты над поверхностью нашей планеты. Чем она выше, тем меньше рассматриваемая величина. Почему это происходит, понять несложно, если учесть, что создаваемое воздухом давление связано исключительно с весом, с которым верхние слои давят на нижние. Чем выше поднимается человек, тем меньше воздушный столб над ним, и, соответственно, меньше будет давление. Приблизительно на высоте 5000 метров изучаемая величина составляет 0,5 атм.

По причине уменьшения давления люди, которые поднимаются в горы, испытывают трудности при дыхании. Процентный состав воздуха остается тот же самый, что и на поверхности земли, однако сокращается число молекул, которые попадают в легкие во время вдоха. Кроме того, путешественники также замечают, что начинают надуваться герметично закрытые сумки из мягкого материала. Происходит это потому, что внутри этих сумок давление оказывается больше (равное 1 атм.), чем снаружи.

Помимо высоты, температура и влажность — это еще два фактора, которые влияют на значение давления в атмосфере.

Виды барометров

В сообщении следует отметить, что начиная с середины XVII века было замечено, что изменение атмосферного давления является надежным индикатором предсказаний состояния погоды в ближайшие часы и даже дни. С тех пор человек стал использовать эти знания в метеорологических целях. Для этого необходимы были точные приборы, способные улавливать малейшие изменения давления.

Первым барометром стал ртутный, созданный Торричелли. Он представляет собой стеклянную трубку длиной 0,85 метра, которая сверху запаяна, а снизу открытым концом помещена в небольшой резервуар со ртутью. Резервуар имеет прямое сообщение с атмосферой. На стеклянную трубку нанесена точная шкала, позволяющая определить десятые доли миллиметра. Этот прибор обладает высокой точностью, однако имеются следующие недостатки его использования:

  1. Токсичность жидкой ртути, по этой причине такой тип барометров в настоящее время редко используется.
  2. Температурное расширение и изменение плотности ртути, хотя последняя величина для 0 °C и +40 °C отличается всего на 0,7%.
  3. Громоздкость прибора, имеющего почти 1 метр в длину.

По этим причинам сейчас широкое распространение получили анероиды. Эти барометры представляют собой небольшой металлический корпус, в котором находится рабочая капсула. Она, как правило, изготовлена из сплава бериллия и меди, который испытывает заметные упругие деформации при изменении внешнего давления. Капсула соединяется со стрелкой, которая указывает на определенное деление шкалы.

Анероидные барометры являются более безопасными, удобными и пригодными для использования, если их сравнивать со ртутными. Однако, они менее точные, поскольку рабочая капсула имеет линейное упругое поведение во время деформации лишь в очень узких пределах.

Таким образом, опыт итальянского ученого Торричелли доказывает существование веса у воздуха и измеряет оказываемое им давление. Также в процессе эксперимента был создан первый в мире барометр, отличающийся высокой точностью показаний.

Источник

Оцените статью