- Испарение жидкостей разной плотности
- Оглавление
- Введение
- Литературный обзор
- Физические свойства жидкостей
- Спирт
- Глицерин
- Подсолнечное масло
- Тема: «Испарение жидкостей разной плотности»
- Приборы и материалы
- Испарение и конденсация
- Испарение
- Испарение: что это за процесс
- Испарение на уровне молекул
- Интенсивность испарения
- Насыщенный пар
- Испарение в жизни
- Испарение в организме человека и животных
- Испарение у растений
- Испарение в природе и окружающей среде
- Испарение в промышленности и быту
Испарение жидкостей разной плотности
Государственное общеобразовательное учреждение
Автор: Абдуназаров Аброр Комилжон угли
Учащийся 9 класса, ГОУ Гимназии № 000
Невского района, г. Санкт-Петербурга
Адрес: Искровский пр. д.30 кв.261
Соавторы: Чумаков Даниил
Учащийся 9 класса, ГОУ Гимназии № 000;
высшей квалификационной категории
ГОУ Гимназии № 000, Невского района
Оглавление
Литературный обзор. 4
Физические свойства жидкостей. 4
Подсолнечное масло. 5
Тема: «Испарение жидкостей разной плотности». 6
Приборы и материалы.. 6
Испарение жидкостей при комнатной температуре. 7
Испарение жидкости при увеличении ее температуры. 9
Испарение жидкости перемещением воздушных масс. 9
Список литературы.. 11
Введение
Жидкость — одно из агрегатных состояний веществ. Основным свойством жидкости является способность неограниченно менять форму.
Молекулы жидкости не имеют определенного положения, но в тоже время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное,
чтобы удержать их на близком расстоянии.
Вещество в жидком состоянии существует в определенном интервале температур, ниже которого переходит в твердое состояние, выше – в газообразное (происходит испарение).
Испарение — это процесс, при котором с поверхности жидкости или твердого тела вылетают частицы (молекулы, атомы), кинетическая энергия которых превышает потенциальную энергию их связи с остальными частицами вещества. Испарение жидкости происходит при любой температуре и с любой площади поверхности, зависящего от рода вещества. Разные вещества имеют разные плотности. Зависит ли испарение жидкости от плотности? Получив ответ на данный вопрос, он поможет неосведомленным людям правильно хранить жидкости и грамотно применять их в жизни.
Литературный обзор
Физические свойства жидкостей
В твёрдом теле молекулы длительно сохраняют взаимное расположение, совершая лишь небольшие колебания около определённых положений равновесия.
Газ является собранием молекул, беспорядочно движущихся по всем направлениям независимо друг от друга.
Движение молекул жидкости представляет собой нечто вроде смеси движений в твердом теле и газе. Поэтому для жидкостей характерны такие физические свойства, как
· образование свободной поверхности и поверхностное натяжение
· перегрев и переохлаждение
· испарение и конденсация
Внешний вид: прозрачная жидкость, не имеющая цвета и запаха.
Молярная масса (М) – 18,01528 г/моль
Температура плавления (t кр) – 0оС
Температура кипения (tкип) – 100оС
Удельная теплота парообразования (L) – 2,3·106 Дж/кг
Плотность (ρ) – 0,9982 г/см3
Поверхностное натяжение (σ) – 72,86·10-3 Н/м
Удельная теплоемкость (с) – 4200 Дж/кг·оС
Является хорошим растворителем полярных веществ
Спирт
Внешний вид: в обычных условиях представляет собой бесцветную легочную жидкость с характерным запахом.
Молярная масса (М) – 46,069 г/моль
Температура плавления (t кр) – 114,15оС
Температура кипения (tкип) – 78,15оС
Удельная теплота парообразования (L) – 0,9·106 Дж/кг
Плотность (ρ) – 0,7893 г/см3
Поверхностное натяжение (σ) – 22,03·10-3 Н/м
Удельная теплоемкость (с) –2500 Дж/кг·оС
Взаимодействует со щелочными металлами с образованием этилатов.
Глицерин
Внешний вид: вязкая прозрачная бесцветная жидкость.
Молярная масса (М) – 91,2 г/моль
Температура плавления (t кр) –18оС
Температура кипения (tкип) – 290оС
Плотность (ρ) – 1,260 г/см3
Поверхностное натяжение (σ) – 59,·10-3 Н/м
Удельная теплоемкость (с) –2430 Дж/кг·оС
Взаимодействует с водой и кислотами. Простейший представитель трехатомных спиртов.
Подсолнечное масло
Внешний вид: имеет окраску светло-желтого цвета, характерный вкус и запах.
Температура кипения (tкип) – 150оС-200оС
Плотность (ρ) – 0,980 г/см3
Удельная теплоемкость (с) –2000 Дж/кг·оС
Растворяется в бензине, ацетоне и подобным им веществам, не растворяется в воде.
Тема: «Испарение жидкостей разной плотности»
Выявление зависимости испарения жидкостей от плотности.
Приборы и материалы
Лабораторные весы, мензурка (4 шт), часы, лист бумаги (А4), бумажный веер, комнатный термометр, штатив (3 шт), пробирка (3 шт), сухой спирт, спички, вода, подсолнечное масло, глицерин, этиловый спирт.
Источник
Испарение и конденсация
4. Выясним, от чего зависит скорость испарения жидкости. Проделаем опыт. Капнем на стеклянную поверхность воду, спирт и растительное масло. Проследим, какая жидкость испарится первой. Заметим, что раньше всех испарится спирт, затем вода, позже — подсолнечное масло. Значит, скорость испарения зависит от рода жидкости.
Вы хорошо знаете, что на ветру бельё сохнет быстрее, чем при отсутствии ветра. Это происходит потому, что ветер уносит вылетевшие из жидкости молекулы, освобождая место для других. Понятно, почему вы дуете на ранку после того, как её смажут иодом и вы почувствуете жжение. Спирт, в котором растворён иод, при этом будет быстрее испаряться. Таким образом, скорость испарения зависит от движения воздуха над поверхностью жидкости.
Как вы думаете, из какого сосуда — стакана или блюдца — вода испарится быстрее, если масса воды будет одинаковой? Опыт показывает, что из блюдца. Это объясняется тем, что площадь поверхности воды в блюдце больше, чем в стакане, следовательно, большее число молекул сможет оказаться на поверхности и, преодолев силы притяжения, вылететь с неё. Значит, скорость испарения зависит от площади поверхности жидкости.
Вы, конечно, замечали, что в жаркий летний день лужи высыхают быстрее, чем в холодный осенний. Очевидно, что с повышением температуры скорость испарения возрастает. И это неудивительно, поскольку чем выше температура жидкости, тем больше скорости движения её молекул и соответственно их кинетическая энергия. А раз так, то большее число молекул способно преодолеть силы притяжения и выйти за пределы поверхности жидкости. Таким образом, скорость испарения зависит от температуры жидкости.
5. Выясним, что происходит с жидкостью в сосуде при испарении. Проделаем опыт. Возьмём термометр, обмотаем его конец тряпочкой, смоченной водой, а лучше одеколоном. Заметим, что столбик жидкости в термометре начнёт опускаться. Это свидетельствует об уменьшении температуры жидкости при испарении. Например, если на руку капнуть одеколон или эфир, то рука начнёт ощущать холод.
Объясняется этот факт следующим образом. При испарении жидкость покидают молекулы, обладающие наибольшей энергией, поэтому внутренняя энергия оставшейся части жидкости уменьшается. Следовательно, уменьшается и температура жидкости.
6. Все вы наблюдали вечером после жаркого летнего дня выпадение росы. Это водяной пар, содержащийся в воздухе, при охлаждении превращается в жидкость, и капельки воды оседают на листьях и траве.
Процесс превращения вещества из газообразного состояния в жидкое называют конденсацией.
Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы возвратятся в жидкость.
Если процесс испарения идёт быстрее, чем процесс конденсации, то масса жидкости в сосуде уменьшается. Это происходит, когда сосуд открыт.
Источник
Испарение
О чем эта статья:
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
- Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
- Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
- из глубины жидкости к поверхности, а затем в воздух;
- только из жидкости к поверхности;
- к поверхности из воды и газовой среды одновременно;
- к площади поверхности только от воздуха.
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |
Испарение на уровне молекул
Давайте вспомним об особенностях разных агрегатных состояний вещества.
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около своего положения в кристаллической решетке
близко друг к другу
малоподвижны, при нагревании скорость движения молекул увеличивается
занимают предоставленный объем
больше размеров молекул
хаотичное и непрерывное
Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.
В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
- Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
- Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
- Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
- Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Насыщенный пар
Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.
Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.
На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.
Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.
Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.
Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.
При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Источник