Почему вода не кончается

Почему вода в реке не кончается

О том, что такое река, наверняка знает абсолютное большинство людей на нашей планете. Это часть мирового океана, представляющая собой постоянный природный поток воды. Скорость течение воды по руслу реки достигает достаточно серьезных показателей, а это значит – что обмен воды в таких водотоках также измеряется весьма приличными коэффициентами.

p, blockquote 1,0,1,0,0 —>

p, blockquote 2,0,0,0,0 —>

И, учитывая такой поток, многие люди задаются вопросом о том, почему вода в реке не кончается. И сегодня мы разберемся в данном вопросе в рамках нашей статьи.

p, blockquote 3,1,0,0,0 —>

Почему вода в реке не кончается

Для того чтобы понять, почему реки все еще не опустели, а их русла не представляют собой осушенные тоннели, необходимо вспомнить едва ли не самые азы географии, которые наверняка изучали все мы еще в средней школе.

p, blockquote 4,0,0,0,0 —>

А точнее – вспомнить необходимо о таком понятии, как «Круговорот воды в природе». Данный процесс представляет собой совокупность всевозможных перемещений, которые осуществляются водой в биосфере нашей планеты. Речь идет о том, что вода испаряется из морей и океанов, после чего вновь выпадает на Землю с неба. Соответственно – происходит круговорот, и вода, равномерно своему испарению, возвращается на поверхность нашей планеты в качестве всевозможных осадков.

p, blockquote 5,0,0,1,0 —>

Если же говорить непосредственно о реках и о том, почему вода в них не кончается, то здесь необходимо уделить внимание той цепочке, которая отслеживается в движении речной воды. А выглядит она примерно так:

p, blockquote 6,0,0,0,0 —>

  1. Вода в реках движется по руслу вплоть до места, в котором она впадает в другие реки, озера, моря или же океаны. В случае впадения реки в другую реку, конечный водный поток, в результате, также впадает в море или океан.
  2. Вода из морей и океанов испаряется и путем конденсации в облаках выпадает в виде осадков. Это может быть не только дождь, но и снег, даже лед.
  3. Дождевая вода может попадать как сразу в реки, так и в горные породы, по которым постепенно добирается до рек. К слову, подобный транспортный путь касается и снежных, а также ледяных осадков, которые тают и также, в итоге, попадают в реки.

p, blockquote 7,0,0,0,1 —>

Таким образом, проходя столь непростой путь, вода в реках не кончается. Разумеется, она циклически «заменяется» другими водными потоками, но баланс воды в реках соблюдается примерно на идентичном уровне. Исключением являются лишь сезоны, ведь в летнее время, когда погода наблюдается более жаркая, испарение воды происходит более обильно, и реки могут мелеть. Правда, данный баланс с лихвой компенсируется, когда после зимы начинает таять снег.

Источник

Почему вода в реке не кончается

Жизнь на Земле давно бы прекратилась, если бы не было постоянного возобновления жизненно необходимых ресурсов. В природе все устроено таким образом, что ничто никуда не исчезает бесследно, одно вещество превращается в другое, одно состояние плавно переходит в иное, все как будто вращается по кругу в огромном замкнутом круговороте. Точно таким же образом обстоит дело с водой на нашей планете, все тот — же круговорот.

Вода совершает круговорот между водными бассейнами Земли, атмосферой и сушей. Реки являются частью водной системы планеты. Вначале цикла, под действием солнечного тепла происходит испарение воды из всех водоемов, значительная часть которых приходится на океаны, а также и с суши, посредством испарения влаги растениями и почвой. Выпаренная вода поднимается в атмосферу, часть ее с дождями опять возвращается в океан, а часть, подхваченная ветрами, облаками разносится по материкам и проливается дождями, выпадает снегами на сушу, в реки и озера. Затем реки опять несут потоки воды к океану, восстанавливая его запасы.

Пролитая дождями на сушу, вода частично восполняет испарившуюся влагу почвы и подземных вод, а часть ее стекает в реки. Кроме того, подпитка рек и озер идет и за счет подземных вод, посредством подводных бьющих ключей. Истоки многих рек находятся в высокогорье, и талая вода из многовековых ледников восполняет водные запасы рек и озер.

Однако, часть испарившейся с поверхности земли воды безвозвратно уходит в космос. Казалось бы, со временем запасы воды на Земле должны будут сократиться, а затем и вовсе исчерпаться, но мудрая природа все предусмотрела. При извержении вулканов происходит пополнение воды на планете за счет глубинных земных запасов. Поэтому, количество воды не только не сокращается, а, наоборот, растет. А прогнозы ученых на будущее показывают еще более значительное увеличение водных земных ресурсов.

Источник

Почему не кончается вода на Земле?

Кровеносная система человека представляет собой замкнутую цепь, по которой беспрерывно течёт кровь, перенося кислород и углекислый газ, питательные вещества и отходы жизнедеятельности. Этот поток никогда не кончается, потому что представляет собой круг или кольцо, а, как известно, «у кольца нет конца». По этому же принципу устроена и водяная сеть нашей планеты. Вода на Земле находится в постоянном круговороте, и убыль её в одном звене сразу же восполняется за счёт поступления из другого. Движущей силой круговорота воды является солнечная энергия и сила тяжести. За счёт круговорота воды все части гидросферы тесно объединены и связывают между собой другие компоненты природы. В самом общем виде круговорот воды на нашей планете выглядит следующим образом. Под действием солнечных лучей вода испаряется с поверхности океана и суши и поступает в атмосферу, причём испарение с поверхности суши осуществляется, как реками и водоёмами, так почвой, растениями. Часть воды сразу возвращается с дождями обратно в океан, а часть переносится ветрами на сушу, где выпадают в виде дождей и снега. Попадая в почву, вода частично впитывается в неё, пополняя запасы почвенной влаги и подземных вод, частично стекает по поверхности в реки и водоёмы почвенная влага частично переходит в растения, которые испаряют её в атмосферу, и частично стекает в реки, только с меньшей скоростью. Реки, питающиеся водой из поверхностных ручьёв и подземных вод, несут воду в Мировой океан, восполняя её убыль. Вода испаряется с его поверхности, снова оказывается в атмосфере, и круговорот замыкается. Такое же движение воды между всеми компонентами природы и всеми участками земной поверхности происходит постоянно и беспрерывно в течение многих миллионов лет.

Надо сказать, что круговорот воды не полностью замкнут. Часть её, попадая в верхние слои атмосферы, разлагается под действием солнечных лучей и уходит в космос. Но эти незначительные потери постоянно восполняются за счёт поступления воды из глубинных слоёв земли при вулканических извержениях. За счёт этого объём гидросферы постепенно увеличивается. по некоторым расчётам 4 млрд. лет назад объём её составлял 20 млн. км 3 , т.е. был в семь тысяч раз меньше современного. В будущем количество воды на Земле, по–видимому, так же будет возрастать, если учесть, что объём воды в мантии Земли оценивается в 20 млрд. км 3 — это в 15 раз больше современного объёма гидросферы. Сравнивая объём воды в отдельных частях гидросферы с притоком воды в них и соседних звеньев круговорота, можно определить активность водообмена, т.е. время, за которое может полностью обновиться объём воды в Мировом океане, в атмосфере или почве. Медленнее всего обновляются воды в полярных ледниках (один раз за 8 тыс. лет). А быстрее всего обновляется речная вода, которая во всех реках на Земле полностью меняется за 11 дней.

8. Водный голод планеты

«Земля — планета поразительной голубизны»! — восторженно докладывали возвращавшиеся из далёкого Космоса после высадки на Луну американские астронавты. Да и могла ли наша планета выглядеть по–другому, если более 2/3 её поверхности занимают моря и океаны, ледники и озёра, реки, пруды и водохранилища. Но тогда, что означает явление, название которого вынесено в заголовках? Какой же «голод» может быть, если на Земле такое изобилие водоёмов? Да, воды на Земле более чем достаточно. Но нельзя забывать и о том, что жизнь на планете Земля, как считают учёные, впервые появилась в воде, а лишь потом вышли на сушу. Свою зависимость от воды организмы сохранили в ходе эволюции в течение многих миллионов лет. Вода — главный «строительный материал», из которого состоит их тело. В этом легко убедиться, проанализировав цифры следующие таблицы:

Огурцы, салат
Помидоры, морковь, грибы
Груши, яблоки
Картофель
Рыба
Медуза 97–99
Человек 65–70

Содержание H2O в процентах к общему весу.

Последнее число этой таблицы свидетельствует о том, что в человеке весом 70 кг. содержится 50 кг. воды! Но ещё больше её в человеческом зародыше: в трёхдневном — 97%, в трёхмесячном — 91%, в восьмимесячном — 81%.

Проблема «водного голода» состоит в необходимости недержания определённого количества воды в организме, так как идёт постоянная потеря влаги в ходе различных физиологических процессов. Для нормального существования в условиях умеренного климата человеку необходимо получать с питьём и пищей около 3,5 литров воды в сутки, в пустыне это норма возрастает, как минимум до 7,5 литров. Без пищи человек может существовать около сорока дней, а без воды гораздо меньше — 8 дней. По данным специальных медицинских экспериментов при потере влаги в размере 6–8 % от веса тела человек впадает в полуобморочное состояние, при потере 10% – начинаются галлюцинации, при 12% человек уже не может восстанавливаться без специальной медицинской помощи, а при потере 20% наступает неизбежная смерть. Многие животные хорошо приспосабливаются к недостатку влаги. Наиболее известный и яркий пример этого — «корабль пустыни», верблюд. Он может весьма долго жить в жаркой пустыни, не потребляя питьевой воды и теряя без ущерба для своей работоспособности до 30% первоначального веса. Так, в одном из специальных испытаний верблюд за 8 дней работал под палящим летним солнцем потеряв 100 кг. из 450 кг. своего начального веса. А когда его подвели к воде, он выпил 103 литра и восстановил свой вес. Установлено, что до 40 литров влаги верблюд может получить путём преобразования жира накопленного в его горбу. Совершенно не употребляют питьевую воду такие пустынные животные, как тушканчики и кенгуровые крысы, – им хватает влаги, которую они получают с пищей, и воды, образующейся в их организме при окислении собственного жира, так же как у верблюдов. Ещё больше воды потребляют для своего роста и развития растения. Качан капусты «выпивает» за сутки более одного литра воды, одно дерево в среднем — более 200 литров воды. Конечно, это довольно приблизительная цифра — разные породы деревьев в разных природных условиях расходуют весьма и весьма различное количество влаги. Так растущий в пустыне саксаул тратит минимальное количество влаги, а эвкалипт, в который в некоторых местах называют «дерево–насос», пропускает через себя огромное количество воды, и по этой причине его насаждения используют для осушения болот. Так превратили в процветающую территорию заболоченные малярийные земли Колхидской низменности.

Уже сейчас около 10% населения нашей планеты испытывают недостаток в чистой воде. А если учесть, что 800 млн. дворов в сельской местности, где живёт около 25% всего человечества, не имеет водопровода, то проблема «водного голода» приобретает поистине глобальный характер. Особенно остра она в развивающихся странах, где плохой водой пользуется примерно 90% населения. Недостаток чистой воды становится одним из важнейших факторов, ограничивающих прогрессивное развитие человечества.

Вода в химии

Вода как растворитель имеет громадное значение и в промышленности, и в быту. Трудно найти какое-нибудь производство, в котором вода не использовалась бы как растворитель. Возьмём, например, производство сахара. Горячая вода извлекает из тонких стружек сахарной свёклы сахар; затем после очистки раствор упаривается, и из него выделяются кристаллы сахара. Без воды работа сахарного завода немыслима. Невозможно себе представить выделку кожи, травление и крашение различных тканей, мыловарение и множество других производств без использования водных растворов различных веществ. Вода как растворитель представляет особенно большой интерес для химии.

Химики очень часто применяют воду для очистки получаемых ими продуктов. Эта очистка основана на том, что большинство веществ растворяется в горячей воде лучше, чем в холодной. Так, например, в 100 граммах воды при температуре в 100 градусов растворяется 342 грамма едкого натрия, а при 20 градусах 109 граммов, при 100 градусах в том же количестве воды растворяется 291 грамм борной кислоты, а при 20 градусах около 40 граммов. Желая получить чистое вещество, поступают так. Загрязнённое вещество растворяют в воде до тех пор, пока не получится насыщенный раствор, т. е. такой, в котором вещество больше уже не растворяется. Затем фильтрованием удаляют нерастворимые примеси и охлаждают жидкость. При этом образуется пересыщенный раствор, из которого по мере понижения температуры выпадает всё больше и больше чистых кристаллов вещества. Растворимые же примеси остаются в растворе. Растворение и кристаллизацию повторяют несколько раз, в зависимости от того, насколько чистый продукт надо получить. Если растворимость изменяется с повышением температуры незначительно (как, например, у поваренной соли: при 100 градусах в 100 граммах воды растворяется 39,1 грамма соли, а при нуле градусов 35,6 грамма), растворы упаривают. Так получают, например, выварочную соль.

Однако вода ценна не только как средство для очистки веществ. Очень часто она играет незаменимую роль как единственно возможная среда для протекания тех или иных химических процессов.

Одним из условий возникновения реакции является столкновение участвующих в ней молекул. В случае, если взаимодействуют газообразные вещества или жидкости, такое столкновение осуществляется легко: молекулы газов и жидкостей достаточно подвижны. Но как провести реакцию между твёрдыми веществами? Ведь в них движение молекул весьма стеснено, так как каждая из молекул закреплена в определённом месте кристалла, где она может только колебаться. Вы можете насыпать в стакан немного соли и лимонной или щавелевой кислоты, но реакции между ними не дождётесь: эта смесь может простоять без всяких изменений сколь угодно долго. Как же быть? Здесь на помощь снова приходит вода. Прибавьте в тот же стакан воды. Сода и кислота растворятся в воде, и мельчайшие частички их получат возможность сталкиваться друг с другом. Между ними моментально начнётся химическая реакция, которую легко заметить по выделению из раствора пузырьков одного из продуктов реакции — углекислого газа.

Известно, что очень крепкую серную кислоту можно свободно перевозить в стальных цистернах — корпус цистерны ею не разрушается. Но если серная кислота разбавлена водой, стальные цистерны использовать уже нельзя, так как водный раствор серной кислоты легко разъедает железо.

Вещества не взаимодействуют друг с другом, если они не растворены, — гласит старинное правило химиков.

Вода отличается ещё одним важным свойством: она сама способна соединяться с очень многими веществами, быть активным участником различных химических процессов.

Вода способна соединяться с простыми веществами как металлами, так и неметаллами.

Например, неметалл хлор даёт с водой смесь кислот: соляную и хлорноватистую. Если хлор пропускать через воду, к которой прибавлен едкий натр, то в результате реакции получается «жавелевая вода», хорошее белящее средство.

С натрием, калием и некоторыми другими металлами вода бурно взаимодействует. При этом получаются едкие щёлочи и выделяется газ водород.

Вода вступает в реакции и со многими сложными веществами. Мы здесь укажем только несколько примеров этих реакций, приводящих к образованию очень важных в химической промышленности веществ — оснований (или гидроокисей) и кислот.

Всем знакома негашёная известь. Это — соединение металла кальция с кислородом или окись кальция. Её получают накаливанием известняка и используют в качестве строительного материала. Если негашёную известь облить водой, то вода химически соединится с нею. Этот процесс называется гашением, а получающийся продукт — гашёной известью или гидроокисью кальция. Она находит широкое техническое применение.

Таким же способом — соединением окислов металлов с водой — могут быть получены и многие другие гидроокиси.

При взаимодействии воды с неметаллическими окислами получаются также необходимые для промышленности продукты — кислоты. Так, окисел азота (двуокись), растворяясь в воде, образует азотную и азотистую кислоты. Эта реакция используется в химической промышленности для получения азотной кислоты. Она же приводит к образованию аммиачной селитры из аммиака, воды и азота в воздухе во время грозы.

Не менее важна реакция между водой и трёхокисью серы: продукт этой реакции — серная кислота, имеющая применение во многих отраслях промышленности.

Во всех перечисленных здесь веществах, которые образуются при участии воды, вода входит в состав вещества как неотъемлемая часть. Это — так называемая конституционная вода. Выделить конституционную воду, не разрушая вещества, нельзя.

Но есть такие соединения веществ с водой, в которых взаимодействующие молекулы сохраняют некоторую самостоятельность. Это — так называемые кристаллогидраты. Они получаются при кристаллизации веществ из водных растворов. Частицы растворённого вещества прочно удерживают около себя молекулы воды, и эти молекулы полностью или частично входят в состав выделяющихся из раствора кристаллов.

Содержащаяся в кристаллах вода, кристаллизационная вода, находится в соединении с молекулами вещества в строго определённых количествах. Так, в кристаллах медного купороса каждая молекула купороса связывает одну, три или пять молекул воды, в кристаллах соды — десять молекул, в кристаллах азотнокислого олова — двадцать молекул воды. Поваренная соль, сахар и многие другие вещества кристаллизуются без воды. Исследования тепловых, электрических и других свойств кристаллогидратов показали, что кристаллизационная вода ведёт себя как твёрдое вещество.

Многие кристаллогидраты непрочны. Так, например, сода теряет свою кристаллизационную воду, находясь просто в воздухе: её прозрачные кристаллы мутнеют и рассыпаются в порошок. Кристаллы медного купороса теряют 80 процентов воды при нагревании до 100 градусов, а остальные 20 процентов только при 240 градусах. При этом синие кристаллы превращаются в белый порошок.

Процесс потери кристаллизационной воды называется выветриванием.

Некоторые безводные кристаллы очень жадно притягивают к себе воду, причём притягивают её в гораздо большем количестве, чем это нужно для образования соответствующего кристаллогидрата; в результате этого они расплываются. Так расплываются поташ, хлористый кальций. Эти вещества используются как поглотители влаги при высушивании различных веществ.

Нам осталось сказать ещё об одном важном для химии свойстве воды — о её способности ускорять течение различных реакций.

Многие химические реакции протекают с неизмеримо малой скоростью, но в присутствии даже ничтожных количеств определённых веществ идут в сотни и тысячи раз быстрее. Вещества, которые ускоряют течение химической реакции, но сами не входят в состав конечных продуктов реакции, называются катализаторами. К числу катализаторов относится и вода, причём каталитическое действие её весьма разносторонне.

Мы знаем, что железо на воздухе ржавеет, что гремучий газ при нагревании взрывается, плавиковая кислота разъедает стекло, натрий и фосфор быстро окисляются на воздухе, хлор активно действует на металлы… Но оказывается, что во всех этих случаях катализатором является вода. При полном отсутствии влаги скорость этих процессов ничтожна. Сухой гремучий газ, например, не взрывается даже при значительном нагревании, а железо в воздухе, лишённом воды, становится таким же устойчивым, как золото или платина.

Можно сказать, что если бы вода не обладала каталитическим действием, мы составили бы совершенно иное представление о химических свойствах окружающих нас веществ.

10. Приобретаемые вопросы об охране водных ресурсов

Вода применяется во всех областях хозяйственной деятельности человека. Практически невозможно назвать какой–либо производственный процесс, в котором не использовалась бы вода. В связи с бурным развитием промышленности, ростом населения городов расход воды увеличивается. Первостепенное значение приобретают вопросы охраны водных ресурсов и источников от истощения, а так же от загрязнения сточными водами. Всем известно, какой ущерб наносят сточные воды обитателям водоёмов. Ещё страшней для человека и всего живого на Земле появление в речных водах ядохимикатов, смываемых с полей. Так наличие в воде 2,1 части пестицида (эндрина) на миллиард частей воды достаточно для гибели всех находящихся в ней рыб. Огромную угрозу для человечества представляют сбрасываемые в реки неочищенные стоки населенных пунктов. Эта проблема решается путём сознания таких технологических процессов, в которых отработанная вода не сбрасывается в водоёмы, а после очистки снова возвращается в технологический процесс.

В настоящее время уделяется огромное внимание охране окружающей среды и в частности естественных водоёмов. Учитывая значение этой проблемы, у нас в стране не принимают закон об охране и рациональном использовании природных ресурсов. Конституция гласит: «Граждане России обязаны беречь природу, охранять её богатства».

Виды воды

Бромная вода —насыщенный раствор Br2 в воде (3,5% по массе Br2 ). Бромовая вода — окислитель, бромирующий агент в аналитической химии.

Аммиачная вода —образуется при контакте сырого коксового газа с водой, который концентрируется вследствие охлаждения газа или специально впрыскивается в него для вымывания NH3. В обоих случаях получают так называемую слабую, или скрубберную, аммиачную воду. Дистилляцией этой аммиачной воды с водяным паром и последующей дефлегмацией и конденсацией получают концентрированную аммиачную воду (18 — 20% NH3 по массе), которую используют в производстве соды, как жидкое удобрение и др.

Подсмольная вода —образуется при полукоксовании и газификации твёрдых, горючих ископаемых. Наиболее характерные компоненты: NH3, фенолы, карбоновые кислоты. Одни из наиболее вредных видов сточных вод. Обезвреживание заключается в выделении из подсмольных вод указанных компонентов и последующей биохимической очистке.

1. Д.Э., Техника и производство. Москва, 1972 г

2. Хомченко Г.П. , Химия для поступающих в ВУЗы. Москва, 1995 г.

3. Прокофьев М.А., Энциклопедический словарь юного химика. Москва, 1982 г.

4. Глинка Н.Л., Общая химия. Ленинград, 1984 г.

5. Ахметов Н.С., Неорганическая химия. Москва, 1992 г.

6. Петрянов И.В., Самое необыкновенное вещество в мире. Москва, 1975 г.

Источник

Читайте также:  Что случилось со стивеном вебером под водой
Оцените статью