Почему вода не может сжаться

почему когда в бутылку наливаешь воду не можешь сжать а когда воздух можеш

всякую ярунду не пишити будуту помогать помогайте

Потому что расстояния между молекулами в жидкостях очень маленькие, а в газах — просто громадные по сравнению с размерами молекул. Поэтому жидкость сжать очень трудно, почти невозможно, молекулам деваться некуда. А газ сжать сравнительно легко — просто расстояния между молекулами газа уменьшатся. Как видишь, объяснить-то тебе эту простую вещь до меня наши «умники» не смогли.. . Они тебе, вишь, говорят, что жидкость не сжимается, сжимаемость, мол, там почти нулевая, но ты-то спрашиваешь, почему это происходит.. . Вот поэтому.

ну для начала тебе стоит понять есть ли у тебя мозги.

Пионэр задал нормальный вопрос, познает мир ёмаё, а вы «мозгов нет». У вас их тоже когда-то не было. Общая суть ответа будет такая — сжатие веществ зависит от двух факторов: 1. уменьшение расстояния между молекулами 2. уменьшение расстояния между элементами образующими молекулу вещества.
Ну, понятно, что если мы поменяем расстояние между элементами в молекуле, то молекула разрушится. Да и сила внутримолекулярной связи столь велика.. . короче невозможно это :))))))
А вот межмолекулярные связи намного слабее. В газе, молекулы которого находятся далекооо друг от друга — придвинуть их друг к дружке легко, поэтому газы хорошо сжимаются. Молекулы же воды лежат плотно друг к другу, одна на другой и ни в какую не хотят при сжатии прижиматься еще ближе — поэтому воду практически невозможно сжать.

Читайте также:  Глинтвейн рецепт приготовления с водой

потому что есть такое понятие сжимаемость — способность вещества изменять свой объем под воздействием внешнего давления
у газов высокая сжимаемость
а у жидкостей она почти нулевая

Источник

Почему вода не может сжаться

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

Можно ли сжать воду?

Откуда же у воды эта колоссальная сила?

Надавим пальцем на небольшой булыжник. На нём не образуется ни малейшей вмятины. А в воду палец погрузится без всякого нажима. Кто знаком с физикой, сможет объяснить: нашей силы оказалось недостаточно, чтобы сжать камень. Вода же и не сжималась. Она лишь раздвинулась, вытеснилась пальцем и заняла новое место; при этом её уровень в сосуде повысился.

Значит ли это, что вода «слабее» камня?

В физической лаборатории можно произвести такой опыт: камень и примерно такой же объём воды попробовать сжать в мощном прессе. Надо воду налить в очень прочный стальной стакан и давить на её поверхность поршнем.

При определённой силе давления камень начнёт сжиматься, а затем крошиться, разрушаться. С водой же ничего не случится, если даже на неё давить с силой во много раз большей. При огромном давлении — около 10 000 тысяч атмосфер — вода сожмётся лишь на одну шестую часть своего объёма.

Этим свойством воды широко пользуются в технике, например в устройствах гидравлических прессов и подъёмников.

Плотной струёй воды, выбрасываемой из особых водяных пушек — гидромониторов, дробят пласты угля и торфа, гасят пламя пожаров. Специальные суда — земснаряды, используя силу воды, размывают природные грунты (песок, глину, гравий и др.), перекачивают их по трубам и в короткий срок намывают гигантские плотины, дамбы и т.п.

Огромная сила воды проявляется и при её охлаждении. Как действует холод на большинство веществ? Они сжимаются, становятся меньше по объёму. Это явление всегда учитывается при строительстве зданий, линий электропередач и т.п.

У воды — иное свойство. Когда она превращается в лёд, то расширяется, занимает больший объём. Вода, замёрзшая в горных расщелинах, легко раскалывает прочнейшие каменные массивы. Много раз бывало, что корпуса больших кораблей, вмёрзшие в полярные льды, раздавливались, как хрупкие скорлупки.

Источник: «Природа — мудрый конструктор» К. Курденков, Ю. Юркан. 1967 г.

Источник

Предложена новая теория, объясняющая, почему вода при нагревании от 0 до 4°C сжимается

Японский физик Масакадзу Мацумото выдвинул теорию, которая объясняет, почему вода при нагревании от 0 до 4°C сжимается, вместо того чтобы расширяться. Согласно его модели, вода содержит микрообразования — «витриты», представляющие собой выпуклые пустотелые многогранники, в вершинах которых находятся молекулы воды, а ребрами служат водородные связи. При повышении температуры конкурируют между собой два явления: удлинение водородных связей между молекулами воды и деформация витритов, приводящая к уменьшению их полостей. В диапазоне температур от 0 до 3,98°C последнее явление доминирует над эффектом удлинения водородных связей, что в итоге и дает наблюдаемое сжатие воды. Экспериментального подтверждения модели Мацумото пока что нет — впрочем, как и других теорий, объясняющих сжатие воды.

В отличие от подавляющего большинства веществ, вода при нагревании способна уменьшать свой объем (рис. 1), то есть обладает отрицательным коэффициентом теплового расширения. Впрочем, речь идет не обо всём температурном интервале, где вода существует в жидком состоянии, а лишь об узком участке — от 0°C примерно до 4°C. При больших температурах вода, как и другие вещества, расширяется.

Между прочим, вода — не единственное вещество, имеющее свойство сжиматься при увеличении температуры (или расширяться при охлаждении). Подобным поведением могут «похвастать» еще висмут, галлий, кремний и сурьма. Тем не менее, в силу своей более сложной внутренней структуры, а также распространенности и важности в разнообразных процессах, именно вода приковывает внимание ученых (см. Продолжается изучение структуры воды, «Элементы», 09.10.2006).

Некоторое время назад общепринятой теорией, отвечающей на вопрос, почему вода увеличивает свой объем при понижении температуры (рис. 1), была модель смеси двух компонент — «нормальной» и «льдоподобной». Впервые эта теория была предложена в XIX веке Гарольдом Витингом и позднее была развита и усовершенствована многими учеными. Сравнительно недавно в рамках обнаруженного полиморфизма воды теория Витинга была переосмыслена. Отныне считается, что в переохлажденной воде существует два типа льдообразных нанодоменов: области, похожие на аморфный лед высокой и низкой плотности. Нагревание переохлажденной воды приводит к плавлению этих наноструктур и к появлению двух видов воды: с большей и меньшей плотностью. Хитрая температурная конкуренция между двумя «сортами» образовавшейся воды и порождает немонотонную зависимость плотности от температуры. Однако пока эта теория не подтверждена экспериментально.

С приведенным объяснением нужно быть осторожным. Не случайно здесь говорится лишь о структурах, которые напоминают аморфный лед. Дело в том, что наноскопические области аморфного льда и его макроскопические аналоги обладают разными физическими параметрами.

Японский физик Масакадзу Мацумото решил найти объяснение обсуждаемого здесь эффекта «с нуля», отбросив теорию двухкомпонентной смеси. Используя компьютерное моделирование, он рассмотрел физические свойства воды в широком диапазоне температур — от 200 до 360 К при нулевом давлении, чтобы в молекулярном масштабе выяснить истинные причины расширения воды при ее охлаждении. Его статья в журнале Physical Review Letters так и называется: Why Does Water Expand When It Cools? («Почему вода при охлаждении расширяется?»).

Изначально автор статьи задался вопросом: что влияет на коэффициент теплового расширения воды? Мацумото считает, что для этого достаточно выяснить влияние всего трех факторов: 1) изменения длины водородных связей между молекулами воды, 2) топологического индекса — числа связей на одну молекулу воды и 3) отклонения величины угла между связями от равновесного значения (углового искажения).

Перед тем как рассказать о результатах, полученных японским физиком, сделаем важные замечания и разъяснения по поводу вышеупомянутых трех факторов. Прежде всего, привычная химическая формула воды H2O соответствует лишь парообразному ее состоянию. В жидкой форме молекулы воды посредством водородной связи объединяются в группы (H2O)x, где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют равновесный, так называемый тетраэдральный угол, равный 109,47 градуса (см. рис. 2).

Проанализировав зависимость длины водородной связи между молекулами воды от температуры, Мацумото пришел к ожидаемому выводу: рост температуры рождает линейное удлинение водородных связей. А это, в свою очередь, приводит к увеличению объема воды, то есть к ее расширению. Сей факт противоречит наблюдаемым результатам, поэтому далее он рассмотрел влияние второго фактора. Как коэффициент теплового расширения зависит от топологического индекса?

Компьютерное моделирование дало следующий результат. При низких температурах наибольший объем воды в процентном отношении занимают кластеры воды, у которых на одну молекулу приходится 4 водородных связи (топологический индекс равен 4). Повышение температуры вызывает уменьшение количества ассоциатов с индексом 4, но при этом начинает возрастать число кластеров с индексами 3 и 5. Проведя численные расчеты, Мацумото обнаружил, что локальный объем кластеров с топологическим индексом 4 с повышением температуры практически не меняется, а изменение суммарного объема ассоциатов с индексами 3 и 5 при любой температуре взаимно компенсирует друг друга. Следовательно, изменение температуры не меняет общий объем воды, а значит, и топологический индекс никакого воздействия на сжатие воды при ее нагревании не оказывает.

Остается выяснить влияние углового искажения водородных связей. И вот здесь начинается самое интересное и важное. Как было сказано выше, молекулы воды стремятся объединиться так, чтобы угол между водородными связями был тетраэдральным. Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, не дают им этого сделать, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, основываясь на своей предыдущей работе Topological building blocks of hydrogen bond network in water, опубликованной в 2007 году в Journal of Chemical Physics, выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами (рис. 3). В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами некоторые микроструктуры не обладают геометрией с тетраэдральными углами (или углами, близкими к этому значению). Они принимают такие структурно неравновесные конфигурации (не являющиеся для них самыми выгодными с энергетической точки зрения), которые позволяют всему «семейству» витритов в целом получить наименьшее значение энергии среди возможных. Такие витриты, то есть витриты, которые как бы приносят себя в жертву «общим энергетическим интересам», называются фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом.

Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты, преобладает, что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Осталось дождаться экспериментального подтверждения существования витритов и такого их поведения. Но это, увы, очень непростая задача.

Источник: Masakazu Matsumoto. Why Does Water Expand When It Cools? // Phys. Rev. Lett. 103, 017801 (2009).

Источник

# физика | Почему вода легче… воды?

Одно из самых распространенных веществ на Земле: вода. Она, как и воздух, необходима нам, но мы ее порой совсем не замечаем. Она просто есть. Но, оказывается, обыкновенная вода может менять свой объем и весить то больше, то меньше. При испарении воды, ее нагревании и охлаждении происходят поистине удивительные вещи, о которых мы и узнаем сегодня.

Сегодня речь пойдет об объеме и весе воды. Оказывается, один и тот же объем воды не всегда весит одинаково. И если налить воду в стакан и она не прольется через край — это еще не значит, что она поместится в нем при любых обстоятельствах.

1. При нагревании вода увеличивается в объеме

Поставьте наполненную водой банку в кастрюлю, наполненную сантиметров на пять кипящей водой, и на слабом огне поддерживайте кипение. Вода из банки начнет переливаться через край. Это происходит потому, что при нагревании вода, подобно другим жидкостям, начинает занимать больше пространства. Молекулы отталкиваются друг от друга с большей интенсивностью и это ведет к увеличению объема воды.

2. При охлаждении вода сжимается

Дайте воде в банке остыть при комнатной температуре, или налейте новую воду, и поставьте ее в холодильник. Через некоторое время вы обнаружите, что полная прежде банка уже не полна. При охлаждении до температуры 3,89 градусов по Цельсию вода уменьшает свой объем по мере снижения температуры. Причиной тому стало снижение скорости движения молекул и их сближение друг с другом под воздействием охлаждения.

Казалось бы, все очень просто: чем холоднее вода, тем меньший объем она занимает, но…

3. …объем воды вновь возрастает при замерзании

Наполните банку водой до краев и накройте куском картона. Поставьте ее в морозилку и дождитесь замерзания. Вы обнаружите, что картонную «крышку» вытолкнуло. На температурном интервале между 3,89 и 0 градусов по Цельсию, то есть на подходе к точке своего замерзания, вода вновь начинает расширяться. Она является одним из немногих известных веществ, обладающих подобным свойством.

Если использовать плотную крышку, то лед просто разнесет банку. Приходилось ли вам слышать о том, что даже водопроводные трубы может разорвать льдом?

4. Лед легче воды

Поместите пару кубиков льда в стакан с водой. Лед будет плавать на поверхности. Вода при замерзании увеличивается в объеме. И, вследствие этого, лед легче воды: его объем составляет около 91% соответствующего объема воды.

Это свойство воды существует в природе не зря. У него есть вполне определенное предназначение. Говорят, что зимой реки замерзают. Но на самом деле это не совсем верно. Обычно замерзает лишь небольшой верхний слой. Это ледяной покров не тонет, поскольку он легче жидкой воды. Он замедляет замерзание воды на глубине реки и служит своеобразным одеялом, оберегая рыб и другую речную да озерную живность от лютых зимних морозов. Изучая физику, начинаешь понимать, что очень многое в природе устроено целесообразно.

5. Водопроводная вода содержит минералы

Влейте в небольшую стеклянную миску 5 столовых ложек обычной водопроводной воды. Когда вода испарится, на миске останется белая кайма. Эта кайма сформирована минералами, которые были растворены в воде, когда она проходила слои грунта.

Посмотрите внутрь своего чайника и вы увидите там минеральный налет. Такой же налет образуется и на отверстии для стока воды в ванне.

Попробуйте испарить дождевую воду, чтобы самостоятельно проверить, содержит ли она минералы.

Если совместить воду с другими жидкостями, то можно обнаружить, что с некоторыми вода не смешивается. Благодаря таким свойствам веществ можно сделать красивейшую сахарную радугу.

Источник

Оцените статью