Почему вода преломляет свет

Почему лучи света преломляются в воде?

Поднимем предмет… не прикасаясь к нему

Сделаем простой и эффектный оптический опыт. Положим на дно пустого стеклянного стакана металлическое кольцо или монету и поставим стакан так, чтобы его край мешал нам видеть их сверху.

Начнем наливать в стакан воду. Мы с удивлением обнаружим, что кольцо или монета начнут появляться из-за края стакана. Трудно удержаться, чтобы не посмотреть на стакан сбоку: нет, кольцо или монета по-прежнему спокойно лежат на дне, а ведь нам казалось, что они всплывают. Всплывают, повинуясь таинственному оптическому закону преломления света.

Только что рассказанный опыт впервые описал великий геометр Евклид в III веке до нашей эры.

Размышляли об искажении пути световых лучей при переходе из воздуха в воду, из воды в стекло (и наоборот) и другие крупные ученые древности — Аристотель, Птолемей, Клеомед. Они первыми начали изучать отражение и преломление лучей на границе двух оптических сред.

Птолемей даже измерил, как отклоняется световой луч от первоначального пути при переходе из воздуха в воду, с помощью опущенного в воду диска с делениями и подвижными линейками, вращающимися вокруг центра диска. По данным Птолемея, если падающий луч отклоняется в воздухе от вертикали на 50 градусов, то угол между вертикалью к поверхности раздела двух сред и преломленным лучом в воде составляет 35 градусов.

Читайте также:  Пруд вода рыбка пословица

Измерения, сделанные в наше время, через 18 веков после исследований Птолемея, дали для преломленного луча цифру 34 градуса и 3 минуты. Неплохой точности измерений достигли древнегреческие ученые!

Беседующие философы. Фрагмент картины Пьеро Франчески, написанной в XV столетии.

Еще до нашей эры был установлен закон отражения от зеркальной поверхности: угол падения равен углу отражения (оба угла отсчитываются от вертикали к поверхности). Этому закону подчиняются любые зеркала: металлические и стеклянные, плоские, выпуклые и вогнутые. С помощью этого закона, впервые сформулированного в труде Евклида «Катоптрика» (от греческого слова «катоптрон» — зеркало), ученые научились рассчитывать форму и размер изображений в зеркалах, определять фокус вогнутых зеркал — жаркую точку, где сходятся отраженные таким зеркалом солнечные лучи.

Древнегреческие исследователи природы доказали, что при переходе из менее плотной среды (воздуха) в более плотную (стекло, воду) световой луч отклоняется от вертикали к поверхности раздела двух сред на меньший угол, чем луч падающий. Они понимали, что уловленную ими закономерность можно выразить в виде четко сформулированного простого закона, но сделать это удалось лишь в первой половине XVII века Виллеброду, Снеллиусу и Рене Декарту.

Падающий и преломленный лучи лежат в одной плоскости для всех углов падения. Отношение синуса угла падения к синусу угла преломления есть величина постоянная и равная показателю преломления одной среды по отношению к другой. Например, относительно воздуха вода имеет показатель преломления — 1,33, а кварцевое стекло — 1,52.

Прошло еще полвека, и ученые открыли, что явление преломления света связано с изменением скорости света при переходе из одной среды в другую.

Показатель преломления больше единицы означает, что луч света, попадая в более плотную среду, немного замедляет свой стремительный бег.

Почему уменьшение скорости приводит к изменению направления лучей?

На первый взгляд это не кажется очевидным, и на помощь полезно призвать образное сравнение. Например, с автомобилем, прямолинейный путь которого, как свидетельствует печальный опыт некоторых водителей, заметно искажается при резком торможении на скользкой дороге…

Или часто приводимая аналогия с отрядом солдат, идущих по ровной гладкой дороге, после которой (под большим углом к дороге) внезапно начинается рыхлое поле. Солдаты, вступившие на поле, естественно, замедляют ход, и те, кто еще идет по ровной дороге, начинают их догонять. Затем и они вступят на поле, скорость всех снова сравняется, но идти вся колонна будет уже немного отклонившись от первоначального направления.

Как говорил в своей речи при получении Нобелевской премии в 1933 году известный физик Э. Шредингер, описывая движение светового луча в среде с переменной плотностью с помощью того же примера с отрядом солдат: «…и поворот фронта осуществится сам собой».

Источник

Преломление света

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Вакуум 1 Вода 1,33
Воздух 1,0003 Глицерин 1,47
Лёд 1,31 Стекло 1,5 – 2,0

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

Закон преломления света. Чтобы рассмотреть этот закон, введём определения. Угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом падения ( a ). Аналогично, угол между преломлённым лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом преломления ( g ).

При преломлении света всегда выполняются закономерности, составляющие закон преломления света: 1. Луч падающий, луч преломлённый и перпендикуляр к границе раздела сред в точке излома луча лежат в одной плоскости. 2. Отношение синуса угла падения к синусу угла преломления – постоянная величина, не зависящая от углов:

n – относительный показатель преломления
a – угол падения луча
g – угол преломления луча

Применяют и качественную трактовку закона преломления света: при переходе света в оптически более плотную среду луч отклоняется к перпендикуляру к границе раздела сред. И наоборот.

Принцип обратимости световых лучей. При отражении или преломлении света падающий и отражённый лучи всегда можно поменять местами. Это означает, что ход лучей не изменится, если изменить их направления на противоположные. Многочисленные опыты подтверждают: при этом «траектория» хода лучей не меняется (см. чертёж).

Источник

Преломление света в физике — формулы и определения с примерами

Содержание:

Преломление света:

Почему ложка, опущенная в стакан с водой, кажется нам сломанной на границе воздуха и воды? Что такое оптическая плотность среды? Как ведет себя свет, переходя из одной среды в другую? Обо всем этом вы узнаете из этого параграфа.

Опыты по преломлению света

Проведем такой эксперимент. Направим на поверхность воды в широком сосуде узкий пучок света под некоторым углом к поверхности. Мы заметим, что в точках падения лучи не только отражаются от поверхности воды, но и частично проходят в воду, изменяя при этом свое направление (рис. 3.33).

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света.

Первое упоминание о преломлении света можно найти в работах древнегреческого философа Аристотеля, который задавался вопросом: почему палка в воде кажется сломанной? А в одном из древнегреческих трактатов описан такой опыт: «Нужно встать так, чтобы плоское кольцо, положенное на дно сосуда, спряталось за его краем.

Потом, не изменяя положения глаз, налить в сосуд воду. Луч света преломится на поверхности воды, и кольцо станет видимым». Аналогичный опыт проиллюстрирован на рис. 3.34.

Причина преломления света

Так почему же свет, переходя из одной среды в другую, изменяет свое направление?

Мы уже знаем, что свет в вакууме распространяется хотя и с огромной, но тем не менее конечной скоростью — около 300 000 км/с. В любой другой среде скорость света меньше, чем в вакууме.

Например, в воде скорость све-та в 1,33 раза меньше, чем в вакууме; когда свет переходит из воды в алмаз, его скорость уменьшается еще в 1,8 раза; в воздухе скорость распространения света в 2,4 раза больше, чем в алмазе, и лишь немного ( = 1,0003 раза) меньше скорости света в вакууме. Именно изменение скорости света в случае перехода из одной прозрачной среды в другую является причиной преломления света.

Принято говорить об оптической плотности среды: чем меньше скорость распространения света в среде, тем большей является оптическая плотность среды.

Так, воздух имеет большую оптическую плотность, чем вакуум, поскольку в воздухе скорость света несколько меньше, чем в вакууме. Оптическая плотность воды меньше, чем оптическая плотность алмаза, поскольку скорость света в воде больше, чем в алмазе.

Чем больше отличаются оптические плотности двух сред, тем более преломляется свет на границе их раздела. Другими словами, чем больше изменяется скорость света на границе раздела двух сред, тем сильнее он преломляется.

Закономерности преломления света

Рассмотрим явление преломления света подробнее. Для этого снова воспользуемся оптической шайбой. Установив в центре диска стеклянный полуцилиндр, направим на него узкий пучок света (рис. 3.35). Часть пучка отразится от поверхности полуцилиндра, а часть пройдет сквозь него, изменив свое направление (преломится).

На схеме по правую сторону луч SO задает направление падающего пучка света, луч ОК — направление отраженного пучка, луч ОВ — направление

Рис. 3.36. Установление закономерности преломления света — углы падения, — углы преломления).

В случае увеличения угла падения света увеличивается и угол его преломления. Если свет падает из среды с меньшей оптической плотностью в среду с большей оптической плотностью (из воздуха в стекло) (а), то угол падения больше угла преломления. Если наоборот (из стекла в воздух) (б), то угол преломления больше угла падения преломленного пучка; MN — перпендикуляр, восставленный в точке падения луча SO. Все указанные лучи лежат в одной плоскости — в плоскости поверхности диска.

Угол, образованный преломленным лучом и перпендикуляром к границе деления двух сред, восставленным в точке падения луча, называется углом преломления.

Если теперь увеличить угол падения, то мы увидим, что увеличится и угол преломления. Уменьшая угол падения, мы заметим уменьшение угла преломления (рис. 3.36).

Соотношение значений угла падения и угла преломления в случае перехода пучка света из одной среды в другую зависит от оптической плотности каждой из сред. Если, например, свет падает из воздуха в стекло (рис. 3.36, а), то угол преломления всегда будет меньшим, чем угол падения (). Если же луч света направить из стекла в воздух (рис. 3.36, б),

то угол преломления всегда будет большим, чем угол падения ().

Напомним, что оптическая плотность стекла больше оптической плотности воздуха, и сформулируем закономерности преломления света.

  1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости.
  2. Существуют такие соотношения между углом падения и углом преломления
  • а) в случае увеличения угла падения увеличивается и угол преломления
  • б) если луч света переходит из среды с меньшей оптической плотностью в среду с большей оптической плотностью, то угол преломления будет меньше, чем угол падения
  • в) если луч света переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью, то угол преломления будет большим, чем угол падения.

(Следует отметить, что в старших классах, после изучения курса тригонометрии, вы глубже познакомитесь с преломлением света и узнаете о нем на уровне законов.)

Объясняем преломлением света некоторые оптические явления

Когда мы, стоя на берегу водоема, стараемся на глаз определить его глубину, она всегда кажется меньшей, чем есть на самом деле. Это явление объясняется преломлением света (рис. 3.37).

Следствием преломления света в атмосфере Земли является тот факт, что мы видим Солнце и звезды немного выше их реального положения (рис. 3.38). Преломлением света можно объяснить еще много природных явлений: возникновение миражей, радуги и др.

Явление преломления света является основой работы многочисленных оптических устройств (рис. 3.39). С некоторыми из них мы познакомимся в следующих параграфах, с некоторыми — в ходе дальнейшего изучения физики.

Итоги:

Световой пучок, падая на границу раздела двух сред, имеющих разную оптическую плотность, делится на два пучка. Один из них — отраженный — отражается от поверхности, подчиняясь законам отражения света. Второй — преломленный — проходит через границу раздела в другую среду, изменяя свое направление.

Причина преломления света — изменение скорости света в случае перехода из одной среды в другую. Если во время перехода света из одной среды в другую скорость света уменьшилась, то говорят, что свет перешел из среды с меньшей оптической плотностью в среду с большей оптической плотностью, и наоборот.

Преломление света происходит по определенным законам.

Преломление света


Почему ноги человека, зашедшего в воду, кажутся короче (рис. 250)? Дно бассейна мы видим ближе к поверхности, чем есть в действительности. Ложка в стакане на уровне поверхности воды (рис. 251) кажется переломленной. Как объяснить эти явления?

Когда пучок света падает на границу раздела двух прозрачных сред, часть его отражается, а часть переходит в другую среду, изменяя свое направление (рис. 252).

Изменение направления распространения света при переходе его через границу раздела двух сред называется преломлением.

Каким законам подчиняется преломление света?

Рассмотрим опыт. В центре оптического диска закрепим стеклянный полудиск (рис. 253), направим на него узкий пучок света (луч 1). Луч 3 — преломленный луч.

Угол между перпендикуляром, проведенным в точку падения к границе раздела двух сред, и преломленным лучом называется углом преломления.

Сравнив углы (см. рис. 253), мы видим, что угол преломления меньше угла падения

Увеличим угол падения (рис. 254). Угол преломления тоже увеличивается, но он по-прежнему меньше угла падения.

Если стекло заменить водой и пустить световой луч и под тем же углом (рис. 255, а), что и на стеклянный полудиск, то угол преломления в воде будет несколько больше, чем в стекле, но меньше угла падения: Сравним скорости света в воздухе, воде и стекле: т. е. стекло оптически более плотная среда, чем вода, а вода — чем воздух. Следовательно, при переходе луча из оптически менее плотной в оптически более плотную среду угол преломления меньше угла падения.

А если луч переходит из воды в воздух?

Из опыта (рис. 255, б) видно, что угол больше угла Значит, если свет переходит из среды оптически более плотной в оптически менее плотную, то угол преломления больше угла падения. Этот вывод логически следует из свойства обратимости, которое характерно не только для падающего и отраженного лучей, но и для падающего и преломленного лучей.

Из результатов проведенных опытов следует.

  1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, проведенным в точку падения луча к границе раздела двух сред.
  2. Угол преломления меньше утла падения при переходе луча из оптически менее плотной среды в оптически более плотную среду. Угол преломления больше угла падения, если луч переходит из оптически более плотной среды в оптически менее плотную.

Эти два главных положения выражают суть явления преломления света. Однако, когда луч надает перпендикулярно на границу раздела двух сред он не испытывает преломления, что можно подтвердить опытом (рис. 256).

Главные выводы:

  1. При переходе из одной среды в другую световой луч на границе раздела сред в большинстве случаев испытывает преломление (изменяет направление).
  2. Луч, падающий перпендикулярно к границе раздела двух сред, не испытывает преломления.
  3. Если луч переходит из оптически менее плотной среды в оптически более плотную, угол преломления меньше угла падения При переходе луча из оптически более плотной среды в менее плотную угол преломления больше угла падения

Преломление света на границе разделения двух сред. Закон преломления света

Еще в древние времена люди утверждали, что палка, опущенная в воду, на границе воздух-вода будто сломана. Вынув из воды, она оказывается целой. Так человек впервые столкнулся с явлением преломления света.

Первым это явление начал изучать древнегреческий естествоиспытатель Клеомед (I в. н. э.). Он установил, что луч света, распространяющийся под углом с менее плотной оптической среды в более плотную, например из воздуха в воду, изменяет свое направление, то есть преломляется. Клеомед говорил, что под определенным углом мы не будем видеть предмет, лежащий на дне сосуда (рис. 135), но если налить в сосуд воды, предмет будет видно.

Таким образом, по мнению Клеомеда, благодаря преломлению лучей можно видеть Солнце, зашедшее за горизонт.

Другой древнегреческий ученый Клавдий Птоломей (II в. н. э.) опытным путем определил величину, характеризующую преломление лучей света при переходе их из воздуха в воду, из воздуха в стекло и из воды в стекло.

Опыт 1. Направим луч света на тонкостенный сосуд с подкрашенной водой, который имеет форму прямоугольного параллелепипеда. Мы видим, что на границе двух сред луч света изменяет свое направление: отражается и преломляется (рис. 136, а).

Изменение направления распространения света при его переходе через границы разделения двух оптически прозрачных сред называют преломлением света.

Выполним чертеж (рис. 136, б). Опыт показывает, что угол отражения света равен углу падения света а, а при переходе луча из воздуха в воду угол преломления света (гамма) меньше угла падения света а. Кроме того, видим, что падающий и преломленный лучи света лежат в одной плоскости с перпендикуляром, проведенным к поверхности разделения двух сред в точку падения света. При переходе луча света из воды в воздух угол преломления света больше угла падения света .

Этот опыт показывает, что при переходе светового луча с одной среды в другую: падающий и преломленный лучи света лежат в одной плоскости с перпендикуляром, проведенным к плоскости разделения двух сред в точку падения луча света; в зависимости от того, с какой среды в какую переходит луч света, угол преломления луча света может быть больше или меньше угла падения света.

Разные среды по-разному преломляют световые лучи. Например, алмаз преломляет лучи света больше, чем вода или стекло.

Среда, преломляющая свет, должна быть прозрачной, то есть такой, чтобы сквозь нее проходили лучи света.

Световые лучи преломляются, поскольку они распространяются в разных средах (телах) с неодинаковой скоростью. В воздухе скорость распространения света больше, чем в воде, в воде больше, чем в стекле.

Опыт 2. Поместим в сосуд с водой специальный источник света, от которого в разные стороны распространяются лучи света (рис. 137). Луч света, падающий перпендикулярно к границе вода-воздух, не преломляется.

Лучи света, падающие под разными углами к поверхности воды, преломляются по-разному. Но есть лучи света, которые вообще не переходят из воды в воздух, а полностью отражаются от ее поверхности. Явление, когда лучи света не выходят из среды и полностью отражаются внутрь, называют полным внутренним отражением света.

Явление полного внутреннего отражения света используют в специальных приборах — световодах. Световоды (рис. 138) широко применяют для передачи изображений предметов с любого места на любые расстояния.

Пример №1

1. Какой из углов больше — угол падения или угол преломления, если свет переходит: а) из воды в воздух; б) из воздуха в стекло; в) из воды в стекло?

Ответ: а) угол падения; б) угол падения; в) угол преломления.

Пример №2

2. В стакан с водой вставили трубку для сока. Как объяснить явление, изображенное на рисунке 145?

Ответ: если смотреть на рисунок, то видим, что трубка для сока кажется сломанной. Это объясняется законами преломления света.

Закон преломления света и показатель преломления

  • Углом падения называется угол между падающим лучом света и перпендикуляром к границе раздела двух сред, восстановленным в точке падения.
  • Углом отражения называется угол между отраженным лучом и перпендикуляром к отражающей поверхности, восстановленным в точке падения.
  • Углом преломления называется угол между преломленным лучом и перпендикуляром к границе раздела двух сред, проведенным через точку падения.

Геометрической оптикой называют раздел оптики, в которой изучаются законы распространения света в прозрачных средах на основе представления о нем как о совокупности световых лучей.

Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается.

Уже в начальные периоды оптических исследований были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

В этих законах использовались понятия световой пучок и световой луч, т. е. предполагалось, что пучок и луч бесконечно тонкие.

Световые пучки получают при пропускании светового излучения, идущего от удаленного источника, через отверстие (диафрагму) в экране I (рис. 52). Эксперименты показывают, что если диаметр D гораздо больше длины световой волны и расстояние l от отверстия до экрана велико по сравнению с размером диафрагмы (l D), то выходящий из диафрагмы пучок является параллельным. Для него на не слишком больших расстояниях l от экрана выполняется неравенство

Если же диаметр диафрагмы или размеры предмета оказываются сравнимы с длиной световой волны, то выходящий световой пучок становится расходящимся, свет проникает в область геометрической тени, происходит дифракция света, т. е. проявляется волновой характер светового излучения. Следует отметить, что дифракция будет наблюдаться на очень больших расстояниях от экрана () даже при диаметре светового отверстия .

Таким образом, луч — это направление, перпендикулярное фронту волны, в котором она переносит энергию.

Лучи, выходящие из одной точки, называют расходящимися, а собирающиеся в одной точке, — сходящимися. Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся — совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

Для изучения свойств световых волн необходимо знать как закономерности их распространения в однородной среде, так и закономерности отражения и преломления на границе раздела двух сред.

Рассмотрим процессы, происходящие при падении плоской световой волны на плоскую поверхность раздела однородных изотропных и прозрачных сред при условии, что размеры поверхности раздела намного больше длины волны падающего излучения.

Пусть на плоскую поверхность раздела LM двух сред падает плоская световая волна, фронт которой АВ (рис. 53). Если угол падения а отличен от нуля, то различные точки фронта АВ волны достигнут границы раздела LM не одновременно.

Согласно принципу Гюйгенса точка которой фронт волны достигнет раньше всего (см. рис. 53), станет источником вторичных волн. Вторичные волны будут распространяться со скоростью v и за промежуток времени за который точка фронта , достигнет границы раздела двух сред (точки ), вторичные волны из точки пройдут расстояние Падающая и возникающие вторичные волны распространяются в одной и той же среде, поэтому их скорости одинаковы, и они пройдут одинаковые расстояния

Касательная, проведенная из точки к полуокружности радиусом является огибающей вторичных волн и дает положение фронта волны через промежуток времени . Затем он перемещается в направлении .

Из построения следует, что С учетом определений угла падения и угла отражения находим, что как углы с взаимно перпендикулярными сторонами. Следовательно, угол отражения равен углу падения ( = ). Таким образом, исходя из волновой теории света на основании принципа Гюйгенса получен закон отражения света.

Рассмотрим, что будет происходить во второй среде (рис. 54), считая, что скорость распространения света в ней меньше, чем в первой (

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Оцените статью