Почему вода тяжелее чем лед

Что тяжелее: 1 литр воды или 1 литр льда

  • Что тяжелее: 1 литр воды или 1 литр льда
  • Почему вода замерзает
  • Сколько килограмм в одном литре

Соотношение объема и массы воды

Литр – это единица объема для жидких веществ. Литрами допустимо измерять также сыпучие вещества с достаточно мелкой фракцией. Для прочих твердых тел используют понятие кубический метр (дециметр, сантиметр). Определение термина и понятия литра было сформулировано Генеральной конференцией по мерам и весам в 1901 году. Определение звучит следующим образом: 1 литр – это объем одного килограмма чистой пресной воды при атмосферном давлении 760 мм ртутного столба и температуре +3,98оС. При этой температуре вода достигает наибольшей плотности.

Перейдя температурный порог в +3,98оС, плотность воды снова начинает уменьшаться, и при +8оС опять достигает тех же значений, что и при нуле.

Что тяжелее?

Если в какой-либо сосуд налить, к примеру, 1 кг воды, она будет иметь объем, равный одному литру. Если вы подвергните эту воду заморозке, то при той же массе в 1 кг, вода, замерзая, будет стремиться занять больше места в сосуде. Закрытый сосуд, ограниченный емкостью 1 кв. дм (1 литр), лед разорвет. Получается, что при одинаковой массе жидкой и замороженной воды, лед будет иметь больший объем, что нарушит первоначальное условие.

Если поставить на заморозку литровую пластиковую бутылку с 1 000 мл воды (1 литр), то в процессе отвердения из нее выльется примерно 80 мл воды. А чтобы получить 1 литр льда, достаточно заморозить 920 мл воды.

Заморозить и восстановить

Сегодня все труднее встретить чистую природную воду. Особенно в условиях города, где она, прежде чем попасть в квартиру, фильтруется, хлорируется, подвергается другим видам физической и химической обработки. Чистая вода становится дефицитом, стоимость добываемой воды из артезианских скважин растет. Однако вода, оказывается, восстанавливает свою изначальную структуру и энергетику после заморозки – она очищается. Поэтому: пейте талую воду! Не зря на нее так хорошо реагируют весной все растения и с удовольствием пьют животные.

Читайте также:  Могут ли у меня воровать воду

Источник

Почему лед легче воды

Закон Архимеда

Удивительная способность льда всплывать и курсировать на поверхности воды объясняется ни чем иным, как элементарными физическими свойствами, который изучают в курсе средней и старшей школы. Доподлинно известен тот факт, что вещества при нагревании имеют свойство расширяться, как, например, ртуть в градуснике, также и вода при понижении температуры замерзает и увеличивается в объемах, образуя на поверхности водоемов корку льда.

Увеличение объема замерзшей воды нередко играет злую шутку с теми, кто забывает емкости с жидкостью на морозе. Вода буквально разрывает тару.

Мнение о том, что во вновь образованной толще льда появляются микроскопические поры, заполненные воздухом, не является ошибочным, но и не может объяснить факт всплывания должным образом. В соответствии с принципами, выведенными и сформулированными древнегреческим ученым, получившими впоследствии название закон Архимеда, тела, которые погружаются в жидкость, выталкиваются из нее с силой, которая равна весовым характеристикам жидкости, вытесняемой данным телом.

Физика воды

Доподлинно известно, что лед примерно на одну десятую легче воды, именно поэтому гигантские айсберги погружены в океан примерно на девять десятых своего общего объема и видны лишь на небольшую долю. Данные весовые различия объясняются свойствами кристаллической решетки, которая у воды, как известно, не обладает упорядоченной структурой и характеризуется постоянным перемещением и столкновением молекул. Это и объясняет более высокую плотность воды по сравнению со льдом, молекулы которого под воздействием низких температур показывают низкую подвижность и небольшую энергетическую составляющую и соответственно меньшую плотность.

Известно также, что максимальную плотность и вес вода имеет при температуре, равной 4оС, дальнейшее понижение ведет к расширению и снижению показателя плотности, что и объясняет свойства льда. Именно поэтому в водоемах тяжелая четырехградусная вода опускается на дно, давая возможность более прохладной подняться и превратиться в не тонущий лед.

Лед имеет специфические свойства, к примеру, он устойчив к инородным элементам, имеет низкую реактивную способность, отличается подвижностью атомов водорода, а потому имеет низкий предел текучести.

Источник

Что легче лед или вода?

Многие задаются вопросом о том, что именно легче в окружающей среде: вода или лед? Ведь лед – это замороженная вода, а если посмотреть с другой точки зрения, то жидкость – это растаявшие массы льда. Все в нашем мире можно перевернуть с ног на голову и представить в таком виде, что любой процесс идет в обе стороны. Но, продолжая разговор о тяжести и, следовательно, плотности, нельзя не отметить, что лед во многом обязан своему маленькому весу обыкновенному воздуху.

Секреты льда

Тут и догадываться не надо: причина кроется в небольших полостях, которые возникают при замерзании воды. Эти полости заполняются обычным воздухом и это придает льду меньший вес. Очень полезное явление, но не только по этой причине ледяные пласты легче. Не так давно мы рассказывали о том, что наибольшая плотность воды в нормальных условиях достигается при температуре в 4 градуса Цельсия. Это значит, что нулевая температура воды дает меньшую плотность, то есть, больший объем. Именно по этой причине (поскольку лед не может возникнуть при температуре, больше 0), куски льда плавают.

Все интересное просто

Как можно подробнее рассказать об этом интересном явлении? Итак, представим себе процесс, который протекает в воде. Этот процесс называется конвекцией: обмен энергией посредством струек. Течения и струйки есть даже в стоячей воде, от них никуда нельзя деться и даже современные ученые до сих пор не смогли выяснить, что же именно кроется за природой движения воды. Поэтому обмен энергий протекает постоянно. Если идет обмен энергией, то меняется и температура. Добавив к этому изменение плотности, получим, что вода, которая обладает большей плотностью, опускается на дно. Но она не может замерзнуть, ведь она слишком теплая для этого.

Таким образом, на освободившееся место выдвигается вода менее плотная, то есть, уже перешедшая точку в +4 градуса и приближающаяся к нулю. Эта вода имеет все шансы замерзнуть. Итак, основные характеристики, показывающие и доказывающие, что вода более плотная и тяжелая, а лед легче. Прежде всего, это наличие пузырьков воздуха или какого-либо газа (ведь вмерзнуть может как воздух, так и отдельно взятый газ). Во-вторых, низкая плотность и, как следствие, больший объем. Все вместе это дает лишь чуть меньшую плотность.

И если массы льда легче того же объема воды, то совершенно ненамного. Представьте себе разницу лишь в десять процентов. В куске льда может быть огромное количество полостей, но при этом общий их объем будет очень мал. Можно представить себе, что если айсберг плывет по воде, то под кромкой воды скрыто 90% общей массы айсберга. Невероятные объемы и веса, которые порой кажутся просто фантастическими. И все же эти объекты плавают.

Когда в воде есть соль

Все это касается пресной воды. Что же сказать о соленой? Она замерзает при более низкой температуре. Обычно указывают что-то от -3,2 до -3,5 градусов. Получается, что в этом случае, когда плотность воды из-за соли становится больше, а при замерзании ледяные массы частично отторгают соль едва ли не на молекулярном уровне, то разница в плотностях становится куда более весомой. И составляет она уже не десять процентов, а доходит почти до двадцати. То есть, если взять тот же айсберг, то над водой будет находиться 20% его массы, а под водой – 80.

Поскольку очень многое зависит от состава воды, то не всегда можно быстро и объективно сказать, насколько легче объем льда. Но даже без тщательного исследования можно смело сказать, что влага всегда тяжелее, иначе бы сегодня в Арктике нередко попадались подводные айсберги.

Источник

Почему лёд тяжелее воды?

Во-первых, как уже сказали много раз, лед легче воды, а не тяжелее.

Во-вторых, почему? Это вполне легитимный вопрос, потому что в большинстве случаев при переходе из твердой фазы в жидкую происходит УВЕЛИЧЕНИЕ объема. Причина заключается в том, что жидкая фаза существует при более высокой температуре, чем твердая. Поэтому в жидкости молекулы сильнее колеблются, чем в твердой фазе, что приводит к увеличению расстояний между ними. Это делает жидкость более «рыхлой», то есть менее плотной, чем твердая фаза.

Но вода и лед ведут себя противоположным образом: при переходе ото льда к воде объем УМЕНЬШАЕТСЯ, а не увеличивается. Причина этого — водородные связи между молекулами H2O. В кристаллической решетке льда каждая молекула H2O связана водородными связями с четырьмя окружающими молекулами Н2О. Это приводит к довольно ажурной кристаллической решетке льда, где молекулы H2O не могут сильно сблизиться, оставляя между собой пустоты. Когда лед превращается в воду, эта кристаллическая структура нарушается. Соседние молекулы по-прежнему связываются водородными связями, но теперь уже каждая молекула H2O оказывается связанной в среднем только с 3.4 другими такими молекулами. Это позволяет молекулам Н2О расположиться более компактно в жидкой воде, чем в твердой фазе льда.

Есть разные фазы льда, помимо обычного, самого распространённого на Земле, некоторые из которых образуются при высоком давлении и имеют плотность больше воды. Поэтому тяжелее тот лёд, в котором молекулы воды расположены более компактно и близко друг к другу.

Вот вырезка из Википедии по фазам льда:

Аморфный лёдАморфный лёд не обладает кристаллической структурой. Он существует в трех формах: аморфный лёд низкой плотности (LDA), образующийся при атмосферном давлении и ниже, аморфный лёд высокой плотности (HDA) и аморфный лёд очень высокой плотности (VHDA), образующийся при высоких давлениях. Лёд LDA получают очень быстрым охлаждением жидкой воды («сверхохлаждённая стекловидная вода», HGW), или конденсацией водяного пара на очень холодной подложке («аморфная твёрдая вода», ASW), или путём нагрева высокоплотностных форм льда при нормальном давлении («LDA»).
Лёд IhОбычный гексагональный кристаллический лёд. Практически весь лёд на Земле относится ко льду Ih, и только очень малая часть — ко льду Ic.
Лёд IcМетастабильный кубический кристаллический лёд. Атомы кислорода расположены как в кристаллической решётке алмаза.
Его получают при температуре в диапазоне от −133 °C до −123 °C, он остаётся устойчивым до −73 °C, а при дальнейшем нагреве переходит в лёд Ih. Он изредка встречается в верхних слоях атмосферы.
Лёд IIТригональный кристаллический лёд с высокоупорядоченной структурой. Образуется изо льда Ih при сжатии и температурах от −83 °C до −63 °C. При нагреве он преобразуется в лёд III.
Лёд IIIТетрагональный кристаллический лёд, который возникает при охлаждении воды до −23 °C и давлении 300 МПа. Его плотность больше, чем у воды, но он наименее плотный из всех разновидностей льда в зоне высоких давлений.
Лёд IVМетастабильный тригональный лёд. Его трудно получить без нуклеирующей затравки.
Лёд VМоноклинный кристаллический лёд. Возникает при охлаждении воды до −20 °C и давлении 500 МПа. Обладает самой сложной структурой по сравнению со всеми другими модификациями.
Лёд VIТетрагональный кристаллический лёд. Образуется при охлаждении воды до −3 °C и давлении 1,1 ГПа. В нём проявляется дебаевская релаксация.
Лёд VIIКубическая модификация. Нарушено расположение атомов водорода; в веществе проявляется дебаевская релаксация. Водородные связи образуют две взаимопроникающие решётки.
Лёд VIIIБолее упорядоченный вариант льда VII, где атомы водорода занимают, очевидно, фиксированные положения. Образуется изо льда VII при его охлаждении ниже 5 °C.
Лёд IXТетрагональная метастабильная модификация. Постепенно образуется изо льда III при его охлаждении от −65 °C до −108 °C, стабилен при температуре ниже −133 °C и давлениях между 200 и 400 МПа. Его плотность 1,16 г/см³, то есть, несколько выше, чем у обычного льда.
Лёд XСимметричный лёд с упорядоченным расположением протонов. Образуется при давлениях около 70 ГПа.
Лёд XIРомбическая низкотемпературная равновесная форма гексагонального льда. Является сегнетоэлектриком.
Лёд XIIТетрагональная метастабильная плотная кристаллическая модификация. Наблюдается в фазовом пространстве льда V и льда VI. Можно получить нагреванием аморфного льда высокой плотности от −196 °C до примерно −90 °C и при давлении 810 МПа.
Лёд XIIIМоноклинная кристаллическая разновидность. Получается при охлаждении воды ниже −143 °C и давлении 500 МПа. Разновидность льда V с упорядоченным расположением протонов.
Лёд XIVРомбическая кристаллическая разновидность. Получается при температуре ниже −155 °C и давлении 1,2 ГПа. Разновидность льда XII с упорядоченным расположением протонов.
Лёд XVПсевдоромбическая кристаллическая разновидность льда VI с упорядоченным расположением протонов. Можно получить путём медленного охлаждения льда VI примерно до −143 °C и давлении 0,8-1,5 ГПа [5].
Лёд XVIКристаллическая разновидность льда с н

Лёд XVIКристаллическая разновидность льда с наименьшей плотностью (0,81 г/см3)[6] среди всех экспериментально полученных форм льда. Имеет строение топологически эквивалентное полостной структуре КС-II (англ. sII) газовых гидратов.

Источник

Почему лёд плавает в воде?

Тот парадоксальный факт, что лёд, т.е. твёрдая форма воды, легче самой воды, общеизвестен, хотя мы редко задумываемся о его парадоксальности. Действительно, у подавляющего большинства веществ твёрдая фаза плотнее жидкой. Вода – одно из редких исключений.

Причина кроется в строении атома воды и взаимодействии этих атомов между собой.

Молекула воды состоит из двух атомов водорода и одного атома кислорода. Так происходит потому, что кислороду не хватает двух электронов до «совершенства» — заполнения внешней орбитали, и он «одалживает» их у атомов водорода (у которых их как раз по одному). Почему так происходит – отдельный вопрос, несколько выходящий за пределы темы нашего разговора.

Атом кислорода значительно больше атома водорода, который вообще является самым маленьким из всех (1 протон, 1 электрон). Поэтому атом кислорода очень сильно притягивает «водородные» электроны – настолько сильно, что почти «отрывает» их от «родного» атома, который в итоге почти лишается их, превращаясь в «голый» протон с зарядом +1. Кислород же, до реакции нейтральный, получает два «лишних» электрона и, соответственно, заряд -2. Получается как бы треугольничек, одна из вершин которого заряжена отрицательно, а две других – положительно. Кстати, угол у вершины этого треугольничка составляет 104 градуса (это немаловажно)

Если мы «набросаем» рядом друг с другом большое множество таких треугольничков, то увидим, что они начнут особым образом ориентироваться в пространстве: положительно заряженные «уголки» одних молекул начинают притягиваться к отрицательно заряженным «уголкам» других. В итоге каждая молекула воды стремится образовать связи с четырьмя другими: каждый атом водорода хочет «приклеиться» к атому кислорода другой молекулы, а к атому кислорода стремятся приклеиваются две молекулы водорода двух других атомов.

Это особое притяжение, возникающее между молекулами воды, называется водородной связью. Эта связь характерна тем, что она срабатывает на существенно больших расстояниях (примерно равных размеру молекулы воды), чем обычные ковалентные связи между молекулами, однако является значительно (на порядок) менее прочной.

Для того, чтобы – с учётом вышеизложенного – понять, почему же лёд легче воды, посмотрим, что будет происходить с водой при её постепенном охлаждении.

Молекулы воды (как и молекулы любой другой жидкости) находятся в постоянном движении, причём чем теплее вода, тем быстрее движутся такие молекулы. Опять же, как и в любой другой жидкости, расстояния между молекулами воды меньше их размеров. То есть, они находятся достаточно близко к друг другу для того, чтобы между ними возникали водородные связи –и они возникают. Однако, как мы уже говорили, эти связи ещё и очень непрочные – их энергия примерно равна энергии теплового движения молекул жидкости. А потому, даже возникнув, такие связи сразу рвутся просто из-за того, что двум связанным молекулам «пришло в голову» разлететься в разные стороны.

Тем не менее, какая-то часть молекул воды в каждый момент времени связана водородными связями, что определяет другие аномальные свойства этого вещества – например, очень большую теплоёмкость, а также ряд других.

Но вот мы охладили жидкость до той температуры, при которой энергия кинетического движения её молекул уже ниже энергии водородной связи. То есть, единожды «попавшись в сети» водородной связи, молекула воды уже не сможет их покинуть, а возникнувшая связь не разрывается. Начинают возникать цепочки сцепленных водородной связью молекул, которые затем объединяются между собой в группы, те – в ещё более крупные объединения. В результате образуется устойчивая структура – кристаллическая решётка. Вода замерзает и превращается в лёд.

Кстати говоря, именно из-за этого кристаллы льда имеют такую форму, какую они имеют – форму, основанную на гексагональной призме (т.е. призме, в сечении представляющей собой правильный шестиугольник). Несложно видеть, что именно такая фигура представляет собой простейший способ упаковки молекул в трёхмерную структуру с учётом того, что каждая из них должна быть связана с четырьмя другими.

Кстати, другие модификации льда, имеющие другое строение кристаллической решётки (а всего таких модификаций 18 штук!) возникают в условиях, когда атомы в решётке удерживаются не только водородными, но и обычными ковалентными связями. Правда, для этого нужны другие температуры и не встречающиеся на Земле давления — либо очень большие, либо, наоборот, слишком маленькие.

А вообще, не будь водородных связей, физические свойства воды существенно бы отличались. Так, вода вскипала бы уже -80 градусах Цельсия, а обращалсь бы в лёд при -100. Ну и, конечно, плотность льда была бы больше плотности воды, и плавать в ней он бы не мог.

К слову, вода – редкое, но не единственное вещество с подобными свойствами. Во фтористом водороде, например, водородные связи имеют даже более сильный характер, отчего теплоёмкость этого вещества даже выше, чем у воды.

Водородные связи играют роль в органической химии и биохимии – например, именно водородные связи стабилизируют спирали ДНК, а также формируют вторичные и третичные структуры многих белков. Полимерные материалы (например, нейлон) также часто обретают свои свойства именно из-за водородных связей между их молекулами.

Так что можно сказать, что самим своим существованием мы с вами обязаны такому явлению, как водородная связь!

Источник

Оцените статью