Испарение и конденсация воды. Несколько практических советов
Вода – одно из самых распространенных и вместе с тем самое удивительное вещество на Земле. Вода находится повсюду: и вокруг нас, и внутри нас. Мировой океан, состоящий из воды, покрывает ¾ поверхности земного шара. Любой живой организм, будь то растение, животное или человек, содержит воду. Человек более чем на 70% состоит из воды. Именно вода – одна из главнейших причин возникновения жизни на Земле. Как и любое вещество, вода может находиться в различных состояниях или, как говорят физики, ‑ агрегатных состояниях вещества: твердом, жидком и газообразном. При этом постоянно происходят переходы из одного состояния в другое – так называемые фазовые переходы. Одним из таких переходов является испарение, обратный процесс называется конденсацией. Давайте попробуем разобраться, как можно использовать это физическое явление, и что нужно знать об этом.
В процессе испарения вода переходит из жидкого состояния в газообразное, при этом образуется водяной пар. Это происходит при любой температуре, когда вода находится в жидком состоянии (0 0 – 100 0 С). Однако скорость испарения не всегда одинаковая и зависит от ряда факторов: от температуры воды, от площади поверхности воды, от влажности воздуха и от наличия ветра. Чем выше температура воды, тем быстрее двигаются ее молекулы и тем интенсивнее происходит испарение. Чем больше площадь поверхности воды, а испарение происходит исключительно на поверхности, тем больше молекул воды смогут перейти из жидкого состояния в газообразное, что увеличит скорость испарения. Чем больше содержание водяных паров в воздухе, то есть чем выше влажность воздуха, тем менее интенсивно происходит испарение. Кроме того, чем больше скорость удаления молекул водяного пара от поверхности воды, то есть чем больше скорость ветра, тем больше скорость испарения воды. Также следует отметить, что в процессе испарения воду покидают самые быстрые молекулы, поэтому средняя скорость молекул, а, значит, и температура воды уменьшаются.
Учитывая описанные закономерности, важно обратить внимание на следующее. Очень горячий чай пить не безвредно. Однако чтобы его заварить, требуется вода с температурой, близкой к температуре кипения (100 0 С). При этом вода активно испаряется: над чашкой с чаем хорошо видны поднимающиеся струйки водяного пара. Чтобы быстро охладить чай и сделать чаепитие комфортным, нужно увеличить скорость испарения, и охлаждение чая произойдет существенно быстрее. Первый способ известен всем с детства: если подуть на чай и тем самым удалить молекулы водяного пара и нагретый воздух от поверхности, то скорость испарения и теплопередачи увеличится, и чай быстрее остынет. Второй способ часто использовали в старину: переливали чай из чашки в блюдце и тем самым увеличивали площадь поверхности в несколько раз, пропорционально увеличивая скорость испарения и теплопередачи, благодаря чему чай быстро остывал до комфортной температуры.
Охлаждение воды при испарении хорошо ощущается, когда летом выходишь из открытого водоема после купания. С влажной кожей находиться прохладнее. Поэтому чтобы не переохладиться и не заболеть, нужно обтереться полотенцем, тем самым остановить охлаждение, вызванное испарением воды. Однако это свойство воды – охлаждаться при испарении – иногда полезно использовать для того, чтобы немного понизить высокую температуру заболевшему человеку и тем самым облегчить его самочувствие при помощи компрессов или обтираний.
При конденсации вода из газообразного состояния переходит в жидкое с выделением тепловой энергии. Это важно помнить, находясь вблизи кипящего чайника. Струя водяного пара, выходящая из его носика, имеет высокую температуру (около 100 0 С). Кроме того, соприкасаясь с кожей человека, водяной пар конденсируется, тем самым увеличивая неблагоприятное термическое воздействие, что может привести к болезненным ожогам.
Также полезно знать, что в воздухе всегда содержится какое-то количество водяных паров. И чем выше температура воздуха, тем больше водяных паров может быть в атмосфере. Поэтому летом при заметном понижении температуры в ночное время часть водяных паров конденсируется и выпадает в виде росы. Если утром пройти босиком по траве, то она будет влажной и холодной на ощупь, так как уже активно испаряется благодаря утреннему солнцу. Похожая ситуация происходит, если зимой войти с улицы в теплое помещение в очках, ‑ очки будут запотевать, так как водяные пары, находящиеся в воздухе, будут конденсироваться на холодной поверхности стекол. Чтобы это предотвратить, можно воспользоваться обычным мылом и нанести на стеклах сетку с шагом около 1 см, а затем растереть мыло мягкой тканью, не спеша и не сильно нажимая. Стекла очков покроются тонкой невидимой пленкой и не будут запотевать.
Водяной пар, находящийся в воздухе, можно с большой точностью считать идеальным газом и рассчитывать параметры его состояния при помощи уравнения Менделеева-Клапейрона. Предположим, что температура воздуха днем при нормальном атмосферном давлении составляет 30 0 С, а влажность воздуха 50%. Найдем, до какой температуры должен охладиться воздух ночью, чтобы выпала роса. При этом будем считать, что содержание (плотность) водяных паров в воздухе не изменялось.
Плотность насыщенного водяного пара при 30 0 С равна 30,4 г/м 3 (табличное значение). Так как влажность воздуха 50%, то плотность водяных паров составляет 0,5·30,4 г/м 3 = 15,2 г/м 3 . Роса выпадет, если при некоторой температуре эта плотность будет равна плотности насыщенного водяного пара. Согласно табличным данным это наступит при температуре примерно 18 0 С. То есть, если ночью температура воздуха опустится ниже 18 0 С, то выпадет роса.
По предложенному методу мы предлагаем вам решить задачу:
В закрытой банке объемом 2 л находится воздух, влажность которого составляет 80%, а температура 25 0 С. Банку поставили в холодильник, внутри которого температура 6 0 С. Какая масса воды выпадет в виде росы после наступления теплового равновесия.
Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы
Источник
Почему вода испаряется при комнатной температуре?
В школе нас учили, что когда вода закипает, она меняет фазу с жидкости на пар. Чтобы вызвать это изменение, требуется высокая температура, называемая точкой кипения. Для воды эта точка составляет 100 °C. Однако вспомните, что во время дождя лужи испаряются после прояснения неба, особенно когда выходит солнце. При испарении фаза воды также переходит из жидкой в парообразную, и это происходит при температурах, далеко не равных 100 °C.
Итак . почему это происходит?
Ответ кроется в физических и химических свойствах молекул воды и связей, образующихся между этими молекулами (межмолекулярных связей).
Химические свойства молекул воды
Молекула воды состоит из двух атомов водорода, соединенных с одним атомом кислорода. Связи между атомами O и H образуются за счет обмена электронами. Эти связи называются ковалентными. Каждый элемент стремится достичь энергетически наименьшего состояния (т.е. наиболее стабильного состояния), теряя или приобретая электроны, чтобы достичь ближайшей конфигурации благородного газа.
Кислород содержит шесть электронов во внешней оболочке и нуждается в двух электронах, чтобы завершить октет и войти в конфигурацию благородного газа — неона. Водород имеет один электрон в своей внешней оболочке и, получив один электрон, может достичь конфигурации благородного газа гелия. Таким образом, один атом кислорода делится двумя электронами, а два атома водорода — одним электроном, образуя одну молекулу воды, т.е. H2O.
Молекула воды имеет слегка изогнутую форму благодаря электронам на атоме кислорода. Это способствует образованию межмолекулярной водородной связи.
Кислород имеет высокую склонность притягивать к себе электроны. Это свойство называется электроотрицательностью. Из-за высокой электроотрицательности электроны проводят больше времени вблизи O, и на O образуется частичный отрицательный заряд. Аналогично, на H образуется частичный положительный заряд. Геометрия молекулы воды такова, что происходит разделение положительных (вблизи двух атомов H) и отрицательных зарядов (на O).
Когда две молекулы воды находятся рядом друг с другом, частично отрицательный O одной молекулы имеет тенденцию притягивать частично положительный атом H другой молекулы, что приводит к слабой связи, называемой водородной связью. Эта связь существует между двумя разными молекулами (межмолекулярная связь). Поскольку водородная связь слабая, для ее разрыва требуется меньше энергии, поэтому вода остается жидкостью при комнатной температуре.
Температура и молекулярная энергия
Температура — это мера средней кинетической энергии, которой обладает молекула. Чем выше температура, тем больше средняя энергия, и тем легче молекулам преодолеть межмолекулярное притяжение и двигаться более свободно. Для того чтобы жидкость перешла в парообразное состояние, необходимо преодолеть две силы.
Первая — это межмолекулярное притяжение близлежащих молекул, называемое когезионными силами. Вторая — нисходящее давление, оказываемое атмосферой. Когда жидкость меняет фазу на пар, ее молекулы приобретают достаточную кинетическую энергию, чтобы преодолеть все межмолекулярные силы, а также преодолеть нисходящее давление, оказываемое окружающей атмосферой.
Влажность
Количество водяного пара, присутствующего в атмосфере, называется влажностью. При любой заданной температуре атмосфера может удерживать только фиксированное количество водяного пара. Чем выше температура, тем большее количество водяного пара присутствует в атмосфере. Концентрация водяного пара в атмосфере имеет верхний предел, за которым водяной пар не может удерживаться.
При испарении, в отличие от кипения, только некоторые молекулы на поверхности обладают достаточной энергией для перехода в парообразную фазу.
Испарение при комнатной температуре
Предположим, что вода налита на стол тонким слоем. Молекулы расположены слоями. Молекулы в самом верхнем слое испытывают межмолекулярные силы притяжения только снизу и с боков, тогда как молекулы в объеме жидкости испытывают межмолекулярное притяжение со всех сторон. Таким образом, молекулы наверху испытывают меньшие суммарные межмолекулярные силы, чем молекулы внутри объема. Поскольку эти межмолекулярные силы (водородные связи) слабы, когда верхний слой подвергается воздействию солнечного света, некоторые молекулы получают достаточно кинетической энергии, чтобы уйти в атмосферу при комнатной температуре.
Более того, чем ниже влажность, тем легче испаряется жидкость. По мере испарения концентрация водяного пара в атмосфере увеличивается. За критическим порогом атмосфера больше не может удерживать водяной пар. Это называется состоянием насыщения. Если состояние насыщения не достигнуто, испарение продолжается.
Таким образом, сочетание влажности и высокой молекулярной энергии делает возможным испарение некоторых молекул на поверхности даже при низких температурах!
Источник
Почему вода испаряется?
Все знают, что если развесить выстиранное белье, то оно высохнет. И так же очевидно, что мокрый тротуар после дождя обязательно станет сухим.
Испарение — это процесс, при котором жидкость постепенно переходит в воздух в форме пара или газа. Все жидкости испаряются с разной скоростью. Спирт, аммиак и керосин испаряются быстрей воды.
Есть две силы, воздействующие на молекулы, из которых состоят все вещества. Первая — это сцепление, которое удерживает их между собой. Другая — тепловое движение молекул, которое заставляет их разлетаться в разные стороны. Когда эти две силы уравновешены, мы имеем жидкость.
На поверхности жидкости ее молекулы находятся в движении. Эти молекулы, которые движутся быстрей соседних, находящихся внизу, могут улетать в воздух, преодолевая силы сцепления. Это и является испарением.
Когда жидкость подогрета, испарение происходит быстрей. Так происходит потому, что в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость. В закрытом сосуде испарение отсутствует. Так случается потому, что количество молекул в паре достигает определенного уровня. Тогда количество молекул, покидающих жидкость, будет равно количеству молекул, вернувшихся в нее. Когда это происходит, мы можем сказать, что пар достиг точки насыщения.
Когда воздух над жидкостью движется, скорость испарения увеличивается. Чем больше поверхность испаряющейся жидкости, тем быстрее происходит испарение. Вода в круглой сковородке испарится быстрей, чем в высоком кувшине.
Куда исчезает вода, когда она высыхает?
Выглянув на улицу или посмотрев на дорогу, вы увидели там воду. Один час яркого солнечного света — и вода исчезает! Или, например, вывешенное на веревке белье высыхает к концу дня. Куда исчезает вода?
Мы говорим, что вода испаряется. Но что это значит? Испарение — это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.
Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них — сцепление, которое притягивает их друг к другу. Другая — это тепловое движение отдельных молекул, которое заставляет их разлетаться.
Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.
Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.
Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.
Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.
Источник