Под водой давление кислорода
Пребывание человека под водой в непривычной для него среде имеет существенные особенности. Погружаясь в воду, человек кроме атмосферного давления воздуха, которое действует на поверхность воды, дополнительно испытывает гидростатическое (избыточное) давление.
Абсолютное давление воды на человека значительно увеличивается с глубиной погружения (1 атмосфера на каждые 10 м погружения). Так, на глубине 10 метров по сравнению с атмосферным давлением оно удваивается и равно 2 кгс/см (200 кПа), на глубине 20 м — утраивается и т.д. Однако относительный прирост давления с увеличением глубины уменьшается.
Наибольший относительный прирост давления приходится на зону первых десяти метров погружения. В этой критической зоне наблюдаются значительные физиологические перегрузки, о которых не следует забывать, особенно начинающим пловцам — подводникам.
Кровообращение под водой в силу неравномерного гидростатического давления на различные участки тела имеет свои особенности. Например, при вертикальном положении человека среднего роста ( 170 см) в воде независимо от глубины погружения его стопы будут испытывать гидростатическое давление на 0,17 кгс/см (17 кПа) больше, чем голова. К верхним областям тела, где давление меньше, кровь приливает (полнокровие), от нижних областей тела, где давление больше, отливает (частичное обескровливание, ноги мерзнут сильнее). Такое перераспределение тока крови несколько увеличивает нагрузку на сердце, которому приходится преодолевать большее сопротивление движению крови по сосудам.
При горизонтальном положении тела в воде разность гидростатического давления на грудь и спину невелика — всего 0,02 — 0,03 кгс/см (2 — 3 кПа) и нагрузка на сердце возрастает незначительно.
Дыхание
В нормальных условиях при каждом вдохе-выдохе в легких обменивается не более всего находящегося в них воздуха. Альвеолярный воздух имеет постоянный состав и в отличии от атмосферного содержит 14% кислорода, 5,6% углекислого газа и 6,2% водяных паров.
Часть воздуха заполняет дыхательные пути организма (трахеи, бронхи) и не участвует в процессе газообмена. При выходе этот воздух удаляется, не достигнув альвеол. При входе в альвеолы вначале поступает воздух, который остался в дыхательных путях после выдоха (обедненный кислородом, с повышенным содержанием углекислого газа и водяных паров), а затем свежий воздух.
Объем дыхательных путей организма, в которых воздух увлажняется и согревается, но не участвует в газообмене, составляет примерно 0.175 литра.
При плавании с дыхательным аппаратом (дыхательной трубкой) общий объем дыхательных путей (организма и аппарата) увеличивается почти в два раза. При этом вентиляция альвеол ухудшается и снижается работоспособность.
При усилении легочной вентиляции, в результате увеличивается скорость потока воздуха в дыхательных путях организма и аппарата (дыхательной трубки). При этом пропорционально квадрату скорости потока воздуха возрастает сопротивление дыханию. С увеличением плотности сжатого воздуха соответственно глубине погружения сопротивление дыханию также возрастает.
Растягивая по времени фазу вдоха и выдоха, можно уменьшить скорость потока воздуха в дыхательных путях. Это приводит к некоторому снижению легочной вентиляции, но в то же время заметно уменьшает сопротивление дыханию.
Плавучесть
При выдохе средний удельный вес человека находится впределах 1020 — 1060 кгс/м куб. (10,2 — 10,6 кН/м куб.) и наблюдается отрицательная плавучесть 1 — 2 кгс (10 — 20 Н). При вдохе средний удельный вес человека понижается до 970 кгс/м re,. и появляется незначительная положительная плавучесть.
При плавании в гидрозащитной одежде плавучесть увеличивается. Плавучесть можно отрегулировать с помощью грузов. Для плавания под водой обычно создают незначительную отрицательную плавучесть — 0,5 — 1 кгс.
Ориентирование
При плавании под водой человек лишен привычной опоры. Под водой пловец с закрытыми глазами допускает ошибки в определении положения тела в пространстве на угол 10 — 25 градусов .
При попадании в слуховой проход холодной воды вследствие раздражения вестибулярного аппарата у пловца появляется головокружение, затрудняется определение направления и ошибка часто достигает 180 град..
Для ориентирования под водой пловец вынужден использовать внешние факторы, сигнализирующие о положении тела в пространстве: движение пузырьков выдыхаемого воздуха из аппарата, буйки и т.п.
Сопротивление воды оказывает заметное влияние на скорость плавания. При плавании под водой сопротивление движению меньше, так как пловец — подводник занимает более горизонтальное положение и ему не надо периодически поднимать голову из воды, чтобы сделать вдох.
Температурный баланс
Охлаждение организма в воде протекает интенсивней, чем на воздухе. Теплопроводность воды в 25 раз, а теплоемкость в 4 раза больше, чем воздуха. Если на воздухе при 4 град человек может без опасности для своего здоровья находиться в течении 6 ч и при этом температура тела у него не понижается, то в воде при такой же температуре незакаленный человек без защитной одежды в большинстве случаев погибает от переохлаждения уже спустя 30..60 мин. Охлаждение организма усиливается с понижением температуры воды и при наличии течения.
Воздух, непосредственно соприкасающийся с кожей, быстро нагревается и фактически имеет более высокую температуру, чем окружающий. Даже ветер не может удалить с кожи этот слой теплого воздуха. В воде с ее большей удельной теплоемкостью и большей теплопроводностью слой, прилегающий к телу, не успевает нагреваться и легко вытесняется холодной водой. Поэтому температура поверхности тела в воде понижается интенсивней, чем на воздухе.
Вследствие интенсивного охлаждения и обжатия гидростатическим давлением кожная чувствительность в воде понижается, болевые ощущения притупляются, поэтому могут остаться незамеченными небольшие порезы и даже раны.
Слышимость
Слышимость в воде ухудшается, так как звуки под водой воспринимаются преимущественно путем костной проводимости, которая на 40% ниже воздушный. Дальность слышимости при костной проводимости зависит от тональности звука: чем выше тон, тем лучше слышен звук.
Звук в воде распространяется в 4,5 раза быстрее, чем в атмосфере, поэтому под водой сигнал от источника звука, расположенного сбоку, поступает в оба уха почти одновременно, разница составляет менее 0,00001 с. Столь незначительная разница во времени поступления сигнала недостаточно хорошо дифференцируется, и четкого пространственного восприятия звука не происходит. Следовательно, установить направление на источник звука под водой человеку трудно.
Видимость
Видимость в воде зависит от количества и состава растворенных в ней веществ, взвешенных частиц, которые рассеивают световые лучи. Глубина проникновения света в толщу воды зависит от угла падения лучей и состояния водной поверхности.
На глубине 10 м освещенность в 4 раза меньше, чем на поверхности. На глубине 20 м освещенность уменьшается в 8 раз,а на глубине 50 м — в несколько десятков раз.
Зрение под водой имеет свой особенности. Вода обладает примерно такой же преломляющей способностью, как и оптическая система глаза. Если пловец погружается без маски, то острота зрения ухудшается в 100..200 раз, а поле зрения уменьшается, изображение предметов получается неясным, расплывчатым, и человек становится как бы дальнозоркий.
При погружении пловца-подводника в маске изображение предметов несколько ближе и выше его действительного местоположения. Сами же предметы кажутся под водой значительно больше, чем в действительности.
Цветоощущение в воде резко ухудшается. Особенно плохо воспринимаются синий и зеленый цвета, которые близки к естественной окраске воды, лучше всего — белый и оранжевый.
Влияние на организм парциального давления газов
Газы, входящие в состав воздуха для дыхания, оказывают влияние на организм человека в зависимости от величины парциального (частичного) давления, то есть давления газа в объеме если удалить все другие компоненты газовой смеси:
Рг — парциальное давление газа, кгс/см , мм рт. ст. или кПа;
n — содержание газа в воздухе, %;
Ра — абсолютное давление воздуха, кгс/см , мм рт. ст. или кПа.
Азот воздуха начинает оказывать токсическое действие практически при парциальном давлении 5,5 кгс/см (550 кПа). Так как в атмосферном воздухе содержится примерно 78% азота, указанному парциальному давлению азота, согласно формуле, соответствует абсолютное давление воздуха 7 кгс/см (глубина погружения — 60 м).
Кислород в больших концентрациях даже в условиях атмосферного давления действует на организм отравляюще. Так при парциальном давлении кислорода 1 кгс/см (дыхание чистым кислородом в атмосферных условиях) уже после 72 — часового дыхания в легких развиваются воспалительные явления. При парциальном давлении кислорода более 3 кгс/см через 15..30 мин возникают судороги и человек теряет сознание.
При малом парциальном давлении кислорода во вдыхаемом воздухе (ниже 0,16 кгс/см ) кровь, протекая через легкие, насыщается не полностью, что приводит к снижению работоспособности, а в случаях острого кислородного голодания — к потере сознания.
Углекислый газ . Повышенное содержание углекислого газа в организме приводит к отравлению, пониженное — к снижению частоты дыхания и его остановке (апноэ). В нормальных условиях парциальное давление углекислого газа в атмосферном воздухе составляет 0,0003 кгс/см (=30Па). Если парциальное давление углекислого газа во вдыхаемом воздухе составляет 0,03 кгс/см (=3кПа), организм уже не справится с выделением этого газа путем усиленного дыхания и кровообращения и могут наступить тяжелые расстройства.
Насыщение организма газами. Пребывание под повышенным давлением влечет за собой насыщение организма газами, которые растворяются в тканях и органах.
Влияние на организм задержки дыхания при нырянии
В воде во время ныряния потребность сделать вдох некоторое время не ощущается. Это происходит до тех пор, пока парциальное давление углекислого газа в крови не достигнет величины, необходимой для возбуждения дыхательного центра. Но и в этом случае усилием воли можно подавить потребность сделать вдох и остаться под водой. При продолжительном воздействии углекислого газа на дыхательный центр его чувствительность сделать вдох в дальнейшем притупляется.
Появление потребности сделать вдох является для ныряльщика сигналом к всплытию на поверхность. Если же ныряльщик не всплывает, то по мере расхода запасов кислорода, содержащегося в воздухе легких, начинает развиваться явление кислородного голодания, которое быстротечно заканчивается неожиданной потерей сознания. Кислородное голодание — наиболее частая причина гибели при нырянии.
Источник
Нормативы дыхания кислородом.статья из ДайвТек
Abirvalg
United States Department of State
В.В.Смолин, Г.М.Соколов
(ГНЦ РФ – Институт медико-биологических проблем РАН)
По поводу различия нормативов дыхания кислородом под давлением
для водолазов и дайверов
Кислород давно привлек внимание водолазных врачей и других специалистов водолазного дела как газ, при применении которого уменьшается насыщение тканей индифферентным газом (азотом, гелием и др.), ускоряется декомпрессия, что повышает эффективность выполнения подводных работ. При возникновении ряда заболеваний (в частности, декомпрессионной болезни и баротравмы легких) кислород также оказывает выраженный лечебный эффект. Кроме того, использование кислорода в снаряжении с замкнутой схемой дыхания специальными подразделениями водолазов обеспечивает скрытность их пребывания под водой. Однако применение кислорода под давлением таит в себе и некоторые опасности, одной из которых является его токсическое действие.
Первые сведения о том, что жизненно необходимый газ кислород является в то же время токсичным, появились практически одновременно с его открытием. Один из первооткрывателей кислорода английский химик и философ Джозеф Пристли, получивший в 1774 г. «дефлогистированный воздух» (названный затем кислородом), в 1775 г. обнаружил, что мыши, помещенные в его среду, заболевают и гибнут. В связи с этим Пристли предсказал, что этот газ может быть вреден для здоровья человека. Повторно отравляющее действие повышенного парциального давления кислорода было открыто французскими учеными К.Дюма в 1793 г. и А.Фуркруа в 1797 г. Однако прошло еще сто лет, прежде чем были проведены более обстоятельные и всесторонние исследования токсического действия О2 на живые организмы – в 1873 г. французским ученым, основоположником гипербарической физиологии Полем Бером и отечественным физиологом И.Р.Тархановым (Тарханишвили), а в 1897-98 гг. – английским физиологом Дж. Лоррэном Смитом. После этого появились понятия «эффект Поля Бера» (судорожная форма отравления кислородом) и эффект «Лоррэна Смита» (легочная форма). Наиболее основательное исследование токсического действия кислорода до конца XIX века принадлежит П.Беру. В середине прошлого века появилась третья форма отравления кислородом – сосудистая.
Интерес к этому сложному и неоднозначному биологическому явлению, появление и развитие глубоководных водолазных спусков, спусков с использованием чистого кислорода и обогащенных кислородом дыхательных газовых смесей, а также лечебное применение кислорода при нормальном и повышенном давлении явились стимулом для проведения в ХХ веке за рубежом и в нашей стране многочисленных исследований по изучению различных сторон физиологического и патологического действия кислорода при различных величинах давления и продолжительности действия на организм животных и человека. Изучалось действие кислорода на центральную нервную, сердечно-сосудистую и дыхательную системы, систему крови, тканевые ферменты и др. В результате этих исследований на основе выявления физиологических и патологических реакций организма на действие кислорода определялись максимальные безопасные величины его парциального давления и допустимая продолжительность дыхания.
Кислород является ядом хроноконцентрационного действия, то есть его поражающее действие зависит в основном от величины парциального давлении и продолжительности дыхания им. В плане водолазных погружений и дайвинга, особенно при кратковременных погружениях на малые и средние глубины, наибольший интерес представляет острая, судорожная форма отравления кислородом, «эффект Поля Бера».
В первой половине ХХ в разных странах было проведено большое количество опасных экспериментов в барокамерах, часто самоэкспериментов, по определению времени наступления судорог при высоком парциальном давлении кислорода.
В 1910 г. Борнштейн дышал чистым кислородом под давлением 20 м вод.ст. (3 абс. кгс/см2) в течение 48 мин. без неблагоприятных последствий.
В 1933 г. английские офицеры Г.Даман и Филипс дышали кислородом под давлением 30 м вод.ст. (4 абс. кгс/см2). У Филипса через 13 мин. возникли судороги, а у Дамана через 16 мин. появилось подергивание мышц лица.
А.Р.Бенке и соавт. (1935) на основании собственных экспериментов с участием испытуемых в условиях барокамеры пришли к заключению, что сравнительно безопасно для человека дыхание кислородом при 1,0 абс. кгс/см2 в течение 4 ч., при 2,0 кгс/см2 – 3 ч., при 3,0 кгс/см2 – 2 ч.
В нашей стране Б.Д.Кравчинский и С.П.Шистовский в 1936 г. провели на себе более 30 успешных испытаний, при которых до 10-20-й мин. дышали кислородом под давлением 5,5 абс. кгс/см2 и 6 абс. кгс/см2. По результатам этих испытаний авторы посчитали безопасным для человека дыхание под давлением 4 абс. кгс/см2 в течение 20 мин., под давлением 5-6 кгс/см2 – 10 мин. Однако затем они дали менее оптимистичные нормативы: 2 абс. кгс/см2 – 50 мин., 3 абс. кгс/см2 – 30 мин., 4 абс. кгс/см2 – 8 мин.
В 1941 г. группа Дж.Б.С.Холдейна (сына Джона Скотта Холдейна – создателя таблиц ступенчатой декомпрессии) провела серию самоэкспериментов по дыханию под разными величинами давления кислорода. Элен Сперуэй 17 раз испытала дыхание кислородом под давлением 3,7 абс. кгс/см2, один раз она выдержала 88 мин., а в другой через 13 мин. у нее начались судороги. Мартин Хазе и Дж.Б.С.Холдейн при дыхании кислородом под давлением 7 абс. кгс/см2 получили судороги через 4,5 и 5 мин. соответственно. В другом эксперименте при дыхании кислородом под давлением 6 абс. кгс/см2 ни у одного из четырех испытуемых в течение 5 мин. не было судорог, но у троих были другие симптомы кислородной интоксикации. Потрясающий самоэксперимент провели Дж.Б.С.Холдейн и К.В.Дональд, которые примерно в течение 20 секунд дышали кислородом под давлением 10 абс. кгс/см2, пытаясь ответить на вопрос: имеет ли в такой высокой концентрации кислород какой-нибудь вкус? Дональд пишет: «Я не собираюсь повторять этот эксперимент».
В 1942 г. К.В.Дональд провел большую серию работ, состоящую из 200 экспериментов при дыхании испытуемых кислородом под повышенным давлением. 36 человек дышали кислородом под давлением от 3 до 7 абс. кгс/см2. При 3,5 абс. кгс/см2 у пяти человек на 19-35-й мин. появились судороги, остальные в пределах 6-96 мин. выключались из аппаратов при появлении различных симптомов отравления. Затем были проведены эксперименты при дыхании испытуемых в водной среде гидробарокамеры под давлением от 1,75 до 4 кгс/см2. На основании проведенных экспериментов были сделаны следующие выводы:
1) устойчивость к токсическому действию кислорода широко варьирует не только у разных лиц, но также у одного и того же лица в разные дни (у одного появились симптомы через 7 мин., а на следующий день – через 148 мин);
2) в водной среде токсическое действие наступает значительно быстрее, чем в сухой барокамере;
3) при выполнении физической работы устойчивость к токсическому действию кислорода значительно снижается.
Отечественные и зарубежные исследователи выявили также значительное усиление токсического действия кислорода при наличии во вдыхаемой газовой смеси диоксида углерода (углекислого газа). Дональд сделал вывод о том, что работа под водой при дыхании кислородом при парциальном давлении выше 1,7 кгс/см2 является опасной.
Кроме того, во всем мире было выполнено большое количество исследований на животных по определению времени дыхания кислородом, при котором возникают те или иные проявления со стороны легких, центральной нервной системы, других органов и систем. В нашей стране всесторонние многолетние исследования по данной проблеме были проведены А.Г.Жиронкиным.
Данные, полученные в опытах на животных и в исследованиях с участием испытуемых, были необходимы для нормирования дыхания водолазов, в первую очередь водолазов военно-морских сил под водой и в барокамерах.
На основании данных, полученных Дональдом, в зарубежных ВМС глубины использования кислорода были ограничены 6-9 м (1,6-1,9 кгс/см2) и в виде исключения – 12 м (2,2 кгс/см2). Так, в США в обычных условиях военные водолазы могут спускаться на кислороде до 7,6 м (до 75 мин.) и в особых случаях – до 12 м (до 10 мин.), в Великобритании и Австралии в покое они могут дышать кислородом на глубине 9 м, а при выполнении работ – на 7 м. Максимальное парциальное давление кислорода для дайверов составляет 1,6 кгс/см2.
При установлении нормативов по кислороду в нашей стране за основу были взяты не данные Дональда, а результаты предыдущих исследований отечественных и зарубежных ученых. С 1943 г. максимальная глубина погружений на кислороде составила 20 м. Следует сказать, что воздушные перерывы позволяют значительно увеличить безопасное время дыхания кислородом.
Принятые в нашей стране нормативы согласуются с результатами отечественных и зарубежных исследований, в частности с широко известным графиком, составленным К.Дж.Ламбертсоном в 1968 г.
Кроме спусков под воду и в барокамерах кислород используется для сокращения времени декомпрессии в барокамерах, а также для лечения как заболеваний водолазов, дайверов и кессонных рабочих, так и самых различных заболеваний, главным образом, сопровождающихся гипоксическими явлениями.
При декомпрессии с малых и средних глубин Б.Д.Кравчинский и С.П.Шистовский (1940) начали применять 80 %-ную кислородно-азотную смесь с «глубины» 30 м. С 1943 г. переход на чистый кислород осуществлялся с 18 м, а с 1952 г. до настоящего времени – с «глубины» 15 м, хотя обычно военные и гражданские водолазы до конца декомпрессии дышат из воздушной среды барокамеры. В ВМФ переход на дыхание кислородом при декомпрессии после глубоководных спусков (на глубины от 60 до 200 м) выполнялся под давлением 20 м вод.ст. (3 абс. кгс/см2). В народном хозяйстве уже первые глубоководные режимы, составленные в начале 1970-х гг., не содержали кислородных выдержек.
Для лечебных целей кислород в нашей стране обычно используется при абсолютном давлении до 2-3 кгс/см2 (для лечения декомпрессионной болезни легкой степени и для оказания помощи при баротравме легких до последующей лечебной рекомпрессии – под давлением 3 кгс/см2). Стандартное лечение декомпрессионной болезни I и II типов у водолазов и дайверов за рубежом предусматривает две ступени использования кислорода: 2,8 и 1,9 кгс/см2.
Таким образом, для спусков водолазов под воду в нашей стране допускается кислород при парциальном давлении в 1,5-2 раза больше, чем для зарубежных водолазов и для дайверов. Различие в допустимом парциальном давлении для профессиональных водолазов разных стран имеет исторически корни более 60-летней давности, что связано с тем, на какие экспериментальные данные ориентировались составители нормативов.
Различие по нормам дыхания кислородом у дайверов и отечественных водолазов вполне объяснимо. Первая причина – это то, что в отличие от дайверов водолазы (и особенно водолазы-глубоководники) проходят профессиональный отбор, тщательное начальное медицинское обследование и ежегодные медицинские осмотры (обследования), в ходе водолазных спусков осуществляется медицинское обеспечение квалифицированным медицинским персоналом, в какой-то степени имеется и «естественный отбор» по данным динамического наблюдения за выполнением водолазами подводных работ, их самочувствием и состоянием здоровья. Авторы данной статьи приняли участие в медицинском обеспечении более тысячи глубоководных человеко-спусков с переходом на дыхание кислородом под давлением 20 м вод.ст. (3 абс. кгс/см2) и неоднократно испытали эти режимы на себе. При этом не отмечалось случаев судорожной и легочной форм отравления кислородом.
Каковы же выводы из вышеизложенного? Ограничение парциального давления кислорода при спусках под воду дайверов сделано не напрасно, а соответствующие отечественные нормативы для водолазов даже более щадящие (следует, правда, отметить, что водолазы дольше находятся на максимальной глубине и выполняют работы, часто тяжелые). Применение чистого кислорода для спусков водолазов под воду (за исключением специальных работ) постепенно уходит из практики, что в основном связано с повсеместным внедрением воздушного снаряжения с открытой схемой дыхания. Спуски в барокамерах под давлением воздуха до 100 м вод.ст. с целью тренировок или лечения не опасны в отношении воздействия кислорода при парциальном давлении 2,3 кгс/см2 ввиду краткого времени пребывания на максимальной «глубине» (до 15-20 мин.).
Ссылка на журнал ДайвТек при перепечатке обязательна!
Источник