Подпиточная вода
Подпиточная вода — вода, подаваемая в водяную тепловую сеть для восполнения потерь сетевой воды и ее разбора на горячее водоснабжение.
3.74 подпиточная вода : Вода, подаваемая в систему теплоснабжения или оборотную систему охлаждения для восполнения потерь циркулирующей в ней воды.
Подпиточная вода — специально подготовленная вода, подаваемая в тепловую сеть для восполнения потерь теплоносителя (сетевой воды), а также водоразбора на тепловое потребление [7].
7. Подпиточная вода
Вода, добавляемая в систему оборотного водоснабжения для восполнения потерь, связанных с продувкой, утечкой, уносом и испарением воды, а также с переходом ее в продукцию и отходы
Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .
Полезное
Смотреть что такое «Подпиточная вода» в других словарях:
подпиточная вода — Вода, добавляемая в систему оборотного водоснабжения для восполнения потерь, связанных с продувкой, утечкой, уносом и испарением воды, а также с переходом ее в продукцию и отходы. [ГОСТ 25151 82] Тематики водоснабжение и канализация в целом … Справочник технического переводчика
подпиточная вода — Вода, подаваемая в теплофикационную сеть на пополнение потерь воды в ней … Политехнический терминологический толковый словарь
подпиточная вода котла — подпитка котла Вода, добавляемая к конденсату пара для восполнения потерь в пароводяном тракте [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы подпитка котла EN make up waterboiler make up water … Справочник технического переводчика
подпиточная вода бассейна выдержки отработавшего ядерного топлива — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN fuel pool makeup water … Справочник технического переводчика
обессоленная подпиточная вода для ядерного реактора — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN demineralized reactor makeup waterDRMW … Справочник технического переводчика
вода подпитки ядерного реактора — подпиточная вода ядерного реактора — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы подпиточная вода ядерного реактора EN reactor makeup waterRMW … Справочник технического переводчика
вода — 1 вода: Оксид водорода Н2О, простейшее устойчивое химическое соединение водорода с кислородом. Источник: РМГ 75 2004: Государственная система обеспечения единства измерений. Измерение влажнос … Словарь-справочник терминов нормативно-технической документации
Вода подпиточная — 6 . Вода подпиточная вода, прошедшая заданную проектом химическую и термическую обработку и предназначенная для восполнения потерь, связанных с продувкой котла, утечкой воды в теплопотребляющих установках и тепловых сетях. Источник … Словарь-справочник терминов нормативно-технической документации
Вода подпиточная — 6. Вода подпиточная вода, прошедшая заданную проектом химическую и термическую обработку и предназначенная для восполнения потерь, связанных с продувкой котла, утечкой воды в теплопотребляющих установках и тепловых сетях. Источник:… … Официальная терминология
вода подпиточная — Специально обработанная вода, подаваемая в систему теплоснабжения для восполнения потерь [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN makeup water DE AuffüllwasserZuwasser FR eau d alimentation d appoint … Справочник технического переводчика
Источник
Подпиточная вода в теплосетях: нормы и требования к качеству
Водопроводная вода может негативно влиять на коммуникации и трубы. Из-за высокого содержания газов, взвеси и солей в трубах образуется накипь, возникает коррозия, уменьшается проходное сечение. Чтобы продлить срок службы трубопровода, используется подпиточная вода.
Подпиточная вода и ее особенности
Подпиточная вода — это специально подготовленная среда для восполнения потерь в системах водо- и теплоснабжения. Она должна соответствовать ГОСТ и содержать строго определенное количество примесей. Только в этом случае удастся предотвратить образование шлама и появление накипи.
Дистилляция — не выход
Подпиточную воду проверяют на соответствие техническим, а в некоторых случаях — санитарно-гигиеническим требованиям. Воду не подвергают полной дистилляции — процедуре, когда из среды полностью удаляют соли. Для технических нужд такой процесс очистки слишком дорогостоящий. Для водопроводной воды дистилляция неприемлема, потому что дистиллированная вода негативно влияет на здоровье. Поэтому для подготовки среды применяют другие технологии очистки, менее радикальные.
Подпиточная вода должна содержать такое количество солей и других веществ, чтобы на поверхности труб максимально медленно происходили процессы отложения накипи, появления коррозии, образования шлама. Накипь в какой-то степени может защитить внутреннюю часть трубопровода от коррозии. Однако она тоже имеет свои негативные стороны. Образование накипи приводит в дальнейшем к уменьшению проходного сечения труб и локальному пережогу отдельных трубок в котельных установках.
Полностью остановить процессы коррозии и образования накипи можно, только подвергнув воду дистилляции. Однако при очистке воды ориентируются не на полное устранение проблем — важно прийти к экономически целесообразному решению. Дистилляция технической воды — это дорого и не окупается в отдаленной перспективе. Дешевле через несколько лет сменить трубы, чем постоянно использовать только полностью очищенную от солей среду.
Требования к среде
Незначительный слой накипи, который образуется на поверхности труб в результате постоянного использования коммуникаций, может предотвратить преждевременную коррозию. Это тоже продлевает срок службы труб. Поэтому среду не очищают полностью от солей — это производится до допустимых пределов. Уровень очистки зависит от водно-химических режимов в контурах котла и температуры среды в трубопроводе.
Чем больше температура среды, тем быстрее происходят процессы отложения солей и коррозия. Также на скорость разрушения трубопроводов влияет давление в трубах. Система под высоким давлением, в которой циркулирует горячая вода, быстрее выйдет из строя, чем коммуникации с холодной водой, где давление незначительное.
Как происходит отложение солей? Весь процесс можно объяснить разложением двууглекислых солей магния и кальция. В результате химической реакции образуются монокарбонаты, которые выпадают в осадок и откладываются на стенках труб. На поверхности образуется твердая корка, которую невозможно убрать естественным способом. Наиболее твердую корку дает углекислый кальций.
Как характеризуется жесткость воды
Жесткость воды бывает трех видов:
Карбонатная жесткость воды считается временной, некарбонатная — постоянной. Суммарная жесткость — это сумма двух показателей (постоянной и временной жесткости). Временную жесткость определяют, оценивая количество бикарбонатов. Она зависит от содержания в среде солей магния и кальция, которые разлагаются при нагревании. Постоянная жесткость также определяется содержанием солей кальция и магния, но речь идет о труднорастворимых в воде солях.
При подготовке среды учитывают все виды солей. В расчет берется постоянная и временная жесткость, а также суммарный показатель.
Коррозия труб происходит из-за газов, которые содержатся в среде. Процесс окисления трубопроводов и оборудования запускают:
- кислород;
- соли серной и соляной кислот;
- двуокись углерода.
Кислород содержится в самой среде. При прохождении среды по трубам он контактирует со стальной поверхностью, соединяется с металлом и вызывает коррозию. Для предотвращения окисления замеряют содержание кислорода в воде.
Содержание двуокиси углерода зависит от содержания в воде карбоната кальция. Защитная карбонатная пленка на поверхности труб может предотвратить разрушение металла. Если содержание карбоната кальция низкое, процесс окисления протекает достаточно быстро. Вода считается коррозионно-агрессивной при низкой содержании карбоната кальция. Одновременно именно карбонат кальция вызывает отложение накипи на поверхности труб. При переизбытке солей кальция вода становится коррозионно-неагрессивной. Но при этом возникает риск уменьшения проходимости трубопровода.
Отдельно стоит сказать о сульфатах и хлоридах. Ранее они считались безопасными для металла. Сегодня уже известно, что хлориды и сульфаты являются катализаторами коррозии и также могут способствовать разрушению металлов. Более того, вещества с содержанием сульфатов и хлоридов разрушают карбонатную пленку (накипь), которая в естественных условиях не подвержена разрушению. После разрушения пленки процессы коррозии ускоряются, происходит быстрое разрушение труб.
Если раньше хлориды и сульфаты не замеряли, то сегодня показатели по содержанию таких веществ обязательно указывают в технической документации. Если не следить за составом среды, углекислотная и кислородная коррозия быстро разрушит трубопроводы. Решить проблему извне будет крайне сложно. В подпиточной воде углекислый газ не должен содержаться вообще. Однако эта проблема до сих пор не решена.
Влияние взвешенных частиц
Взвешенные частицы в воде также влияют на работу трубопроводов. Если кислород и углерод запускают коррозию, а соли вызывают отложение налета, то взвешенные частицы вызывают отложение ила и грязи. Постепенно в трубопроводах, радиаторах, трубках подогревателей возникает засор. Коммуникации перестают выполнять свое основное назначение.
В подпиточной воде, предназначенной специально для теплосетей, содержание таких частиц не должно превышать 5 мг/л. Это вполне допустимая норма — в таком количестве взвешенные частицы не откладываются в коммуникациях. Засор происходит крайне редко. Если вода не соответствует нормам ПТЭ, то проблемы возникнут очень быстро. Очищать радиаторы и трубопроводы крайне сложно — это потребует дополнительных расходов. Часть расходов придется понести потребителям.
Нормы ПТЭ и ГОСТ
Состояние технической воды для теплосетей прописано в ПТЭ — правилах технической эксплуатации тепловых станций и сетей. Если вода предназначена для питья и поступает в жилые помещения, то требования к ее качеству можно найти в ГОСТ 2874-73. Даже в технической воде должны отсутствовать вредные для здоровья вещества и примеси. Если система имеет водоразбор, то среда должна отвечать строгим санитарно-гигиеническим требованиям.
В жилых домах системы теплоснабжения имеют непосредственный водоразбор. Следовательно, среда в таких системах должна проходить санитарно-гигиеническую проверку. Согласно ГОСТ 2874-73 регламентируется вкус, цвет, запах, химический состав и прозрачность среды. В стандарте прописано содержание взвешенных частиц, хлоридов, железа, минеральных солей, сульфатов, солей кальция и магния. Также установлено строгое требование к максимальной жесткости воды. Жесткость такой среды не должна превышать 7 мг-экв/л.
Лишенная солей (дистиллированная) вода запрещена к использованию. Уже проанализировано влияние такой среды на состояние здоровья человека. Дистиллированная вода нарушает работу желез внутренней секреции и вызывает проблемы с пищеварением. Для осветления и очистки воды иногда применяются специальные составы. Содержание таких составов регламентировано. В ГОСТ указано максимально допустимое содержание таких средств в воде.
Вода, которую используют только для технических нужд, не осветляется. В средах, которые используют только для теплоснабжения, допускается иное содержание сульфатов, солей магния и кальция, хлоридов и взвешенных частиц. Однако, чем выше температура среды, тем ниже допустимое содержание примесей. Температура среды влияет на скорость протекания процессов.
Борьба с коррозией, шламом, накипью
Шлама, накипи и коррозии в системах теплоснабжения избежать очень сложно. Для продления срока службы трубопроводов можно:
- Использовать для систем теплоснабжения трубы, которые устойчивы к коррозии и образованию накипи.
- Снизить коррозионную активность среды.
- Использовать для защиты внутренней поверхности труб специальные защитные пленки.
Также для защиты труб используется метод деаэрации, когда из системы удаляется лишний воздух. Возможно и связывание окислителей с помощью химических веществ — реагентов. Эти методы используются в комплексе с другими способами борьбы с коррозией. Снижение до минимума содержания солей нецелесообразно. В котельных устанавливаются деаэраторы вакуумного и атмосферного типов, используется также естественная деаэрация.
Для удаления углекислого газа из системы производится силикатирование среды, обработка воды щелочными реагентами и сульфитом натрия. После очистки среда проходит тщательную проверку.
Источник
1.2.5. Подпитка тепловой сети
Протяжённость тепловых сетей в городах, особенно в мегаполисах, достигает несколько сотен километров, к тепловым сетям присоединены тысячи потребителей, поэтому утечки теплоносителя неизбежны. Потери тепла в системах теплоснабжения являются внешними потерями, которые характерны именно для ТЭЦ. Потери тепла иногда достигают нескольких сотен тонн в час. Поэтому на ТЭЦ эти потери должны восполняться, причём не сырой водой, а химически обработанной и деаэрированной.
Для восполнения потерь теплоносителя в сетях предусмотрено множество оборудования, собираются схемы подготовки добавочной воды именно для тепловых сетей. К числу оборудования подпитки теплосети можно отнести: подогреватель исходной сырой воды, различные фильтры химической водоочистки, деаэратор подпитки теплосети, причём применяются либо вакуумные деаэраторы, либо деаэраторы атмосферного типа, подпиточный насос и соответствующие соединительные трубопроводы и арматура.
На некоторых электростанциях дополнительно применяются декарбонизаторы, предназначенные для удаления углекислоты из добавочной воды. Декарбонизатор включается, как правило, перед вакуумным деаэратором, и уже насосом подпиточная вода из декарбонизатора направляется в деаэратор. Включение в схему подпитки теплосети декарбонизатора позволяет вместе с вакуумным деаэратором полностью удалить углекислоту из подпиточной воды. Этот способ основан на экспериментально установленном эффекте перераспределения долей углерода, удаляемых из добавочной воды в декарбонизаторах и вакуумных деаэраторах, при изменении температуры исходной воды перед декарбонизатором.
Таким образом, система подпитки добавочной воды для тепловой сети является важнейшим узлом ТЭЦ, к которой предъявляются жёсткие требования.
1.2.6. Основное и вспомогательное оборудование теплофикационных установок
Вода, подаваемая в тепловую сеть для нужд потребителей, на ТЭЦ подогревается в сетевых подогревателях турбоустановок, в пиковых подогревателях и в пиковых водогрейных котлах, которые относятся к основному теплофикационному оборудованию ТЭЦ. К вспомогательному теплофикационному оборудованию относятся: подпиточная установка теплосети, сетевые насосы, баки-аккумуляторы, рециркуляционные насосы водогрейных котлов и т.д.
Пиковые водогрейные котлы (ПВК) предназначены для установки на ТЭЦ с целью покрытия пиков теплофикационных нагрузок. Пиковые водогрейные котлы обычно устанавливаются в отдельных помещениях на крупных ТЭЦ или в главном корпусе на небольших ТЭЦ. Топливом этих котлов служит большей частью мазут или газ. Ввиду малого использования в течение года пиковые котлы выполняют простыми по конструкции и недорогими. Здание может выполняться лишь для нижней части котлов, верхняя часть их при этом остаётся на открытом воздухе. До ввода в работу ТЭЦ водогрейные котлы можно использовать для временного централизованного теплоснабжения района. Сетевая вода нагревается последовательно в сетевых подогревателях до 110÷120 0 С, а затем в ПВК до 150 0 С максимально.
Во избежание коррозии металла котла температура на входе в него должна быть не ниже 50÷60 0 С, что достигается рециркуляцией и смешением горячей и холодной воды. Расчётный КПД водогрейных котлов на газе и мазуте достигает 91÷93%. Выпускаются и используются ПВК на угле. У них своя пылеподготовка, дымососы и другое оборудование.
Пароводяные подогреватели теплоподготовительных установок предназначены для подогрева сетевой воды паром от турбин или от котлов через редукционно-охладительные установки (сокращённо РОУ).
Сетевые насосы служат для подачи горячей воды по теплофикационным сетям и в зависимости от места установки применяются в качестве насосов первого подъёма, подающих воду из обратного трубопровода в сетевые подогреватели; второго подъёма для подачи воды после сетевых подогревателей в теплосеть; рециркуляционных, установленных после пиковых водогрейных котлов.
Сетевые насосы должны обладать повышенной надёжностью, так как перебои или неполадки в работе насосов сказываются на режиме работы ТЭЦ и потребителей.
Основной особенностью работы сетевых насосов являются колебания температуры подаваемой воды в широких пределах, что в свою очередь вызывает изменение давления внутри насоса. Сетевые насосы должны надёжно работать в широком диапазоне подач. Обычно сетевые насосы выполняются центробежными, горизонтальными, с приводом от электродвигателя.
Источник