Физико-химические процессы твердения портландцемента.
Читайте также:
A) Природные процессы, влияющие на загрязнение атмосферы.
Активные процессы в области ударения в СРЯ
Антропогенное воздействие на биогеохимические процессы окружающей среды, их последствия.
Билет №1. Грузы. Классификация. Физико-химические и объемно-массовые свойства грузов
Биохимические процессы пищевой технологии
Вакуумная обработка жидкой стали. Основные процессы, протекающие при вакуумировании. Задачи, решаемые вакуумной обработкой. Особенности ВДП.
Виды эмиссии. Процессы эмиссии могут быть охарактеризованы с разных сторон.
Вопрос 2.23 Политические процессы на постсоветском пространстве.
Вопрос 30 Информация и коммуникации в управлении. Коммуникационные процессы.
Вопрос 4. Интеграционные процессы в менеджменте. Роль и свойства управленческой информации.
Одним из основных свойств цемента является прочность, которая определяется в положенные сроки испытанием образцовбалочек размером 40x40x160 мм первоначально на изгиб, а затем половинок — на сжатие. Балочки готовят из раствора состава 1:3 (1 ч. по массе цемента, 3 ч.— нормального Вольского песка) при водоцементном отношении (отношении количества воды к количеству цемента), равном 0,4. Водоцементное отношение в свою очередь проверяется, а при необходимости корректируется по расплаву конуса на встряхивающем столике. Расплыв усеченного конуса из растворной смеси, изготовленного в форме высотой 60 мм и основаниями верхним с внутренним диаметром 70 мм и нижним —100 мм, после 30 встряхиваний должен быть в пределах 106. 115 мм. При отсутствии встряхивающего столика испытанна проводят на стандартной лабораторной виброплощадке. В этом случае после 20 с вибрирования расплыв должен быть (170 ± 5) км.
Твердение цемента. Твердение портландцемента — сложный физикохимический процесс При затворении цемента водой основные минералы, растворяясь, гидратируются по уравнениям:
Образующиеся новообразования отличаются от первоначальных меньшей растворимостью и, выпадая в осадок, выкристаллизовываются, что приводит к потере пластичности (схватыванию) и последующему твердению. Добавка гипса в самом начале процесса при растворении взаимодействует с трехкальциевым алюминатом, образуя гидросульфоалюминаты, которые, обволакивая цементные зерна, замедляют процесс растворения и гидратации. Однако в последующем эти оболочки разрушаются (чем меньше гипса, тем замедление короче по времени) и процесс твердения ускоряется. Но сами выкристаллизовывающиеся новообразования начинают препятствовать гидратации, поэтому значительная часть зерен цемента может гидратироваться при наличии водной среды весьма продолжительный срок, измеряемый даже годами.
Цемент твердеет тем быстрее, чем больше в нем алита (алитовые цементы) и трехкальциевого алюмината. С течением времени процесс твердения резко замедляется. Цементы, содержащие много белита (белитовые цементы), в раннем возрасте твердеют медленно; нарастание прочности продолжается длительно и равномерно. Процессы твердения и особенно схватывания сопровождаются выделением теплоты, которая тем интенсивнее, чем быстрее протекает процесс схватывания. Поэтому в массивных конструкциях, как правило, применяют белитовые цементы. Использование в таких конструкциях алитовых цементов может привести к интенсивности тепловыделению, разогреву до высокой температуры (70. 80 °С), появлению трещин и даже потере воды, что в итоге приведет к утрате цементным камнем своих качеств. В то же время применение алитовых цементов позволяет быстрее получить минимальную прочность, а интенсивное тепловыделение обеспечивает в некоторых случаях необходимую для твердения температуру в зимних условиях.
При твердении цемента на воздухе происходит небольшая усадка, а в воде — набухание.
При смешивании портландцемента с водой образуется пластичное, легко формуемое клейкое тесто, постепенно густеющее и переходяти камневидное состояние.
Твердение цемента—сложный процесс, включающий ряд химических и физических явлений. При затворении минералы цемента реагируют и дают различные новообразования.
В присутствии гипса и воды трехкальциевый алюминат образует эттрингит — гидросульфоалюминат кальция, замедляющий схватывание и твердение цемента.
Механизм твердения цемента очень сложен. Химические реакции начинают протекать сразу после смешивания цемента с водой. Частицы портландцемента начинают растворяться, одновременно с этим совершаются гидратация и гидролиз продуктов растворения.
Первыми гидратными новообразованиями являются эттрингит и гидроксид кальция.
Компоненты цемента растворяются слабо, медленно, образуется насыщенный раствор, заполняющий пространства между зернами. Затем образуются очень мелкие гидросиликаты, гидроалюминаты и гидроферриты кальция, практически нерастворимые в воде. Раствор становится перенасыщенным, быстро переходящий в коллоидное состояние. В виде мельчайших частиц из него выпадают гидратные соединения, образуется гель, обладающий клеящими свойствами.
В процессе дальнейшей гидратации в цементном тесте уменьшается количество свободной воды, клейкость геля увеличивается. Тесто густеет, происходит его схватывание. Затем новообразования начинают кристаллизоваться.
Образующиеся кристаллы сращиваются между собой, обрастают длинными игольчатыми кристаллами, в результате чего создается кристаллический сросток, т. е. наступает конец схватывания цемента. В дальнейшем цементный камень уплотняется за счет продолжающихся реакций взаимодействия между цементом и водой, частичного обезвоживания и дальнейшей кристаллизации.
При твердении цемента на воздухе цементный камень дополнительно упрочняется в результате карбонизации гидроксида кальция.
Затвердевший цементный камень представляет собой весьма прочный кристаллический каркас, заполненный гелем, внутри которого находятся не затронутые реакцией внутренние слои цементных зерен. Поры в цементном камне заполнены воздухом и капиллярной водой.
Из-за малой растворимости компонентов процесс твердения портландцемента протекает длительное время — годами. Однако нарастание прочности цемента с течением времени замедляется. Поэтому качество цемента принято оценивать по его прочности, набираемой через 28 сут твердения.
Схватывание и твердение портландцемента зависят от ряда факторов: химического и минерального состава клинкера, содержания добавок, тонкости помола, температуры и влажности окружающей среды и пр. Понижение температуры от 20° до 5 °С замедляет твердение цемента почти в три раза; повышение температуры до 80 °С ускоряет гидратацию в шесть раз.
Цемент нормально твердеет лишь при достаточной влажности среды; повышение температуры не должно сопровождаться высушиванием. Ускорение процессов твердения портландцемента при тсплопой обработке — запаривании, пропаривании, электропрогреве — позволяет получать в короткий срок бетонные и железобетонные изделия требуемой отпускной прочности.
Бетонные и железобетонные конструкции должны характеризоваться не только механической прочностью и устойчивостью под действием рабочих нагрузок, но и надлежащей долговечностью (стойкостью) под разрушающим (агрессивным) влиянием разнообразных внешних химических и физических факторов.
В зданиях и сооружениях бетоны могут подвергаться отрицательному воздействию, в первую очередь, воды и водных растворов различных веществ, в том числе и газов, вызывающих химическую коррозию; различных неорганических и органических веществ в жидком и газообразном состоянии (химическая коррозия); многократно повторяющихся процессов увлажнения и высыхания, а также замерзания и оттаивания, часто в водонасыщенном состоянии (физическая коррозия); различных веществ, отлагающихся в порах и капиллярах цементного камня и бетона в результате капиллярного подсоса минерализованных вод и их испарения; кристаллизуясь, они могут вызывать вредные напряжения (физическая коррозия).
Следует подчеркнуть, что разрушающее влияние на бетон различных агрессивных факторов часто усиливается его напряженным состоянием, возникающим под действием механических нагрузок.
Портландцемент и различные его производные, а следовательно, и бетоны на их основе характеризуются относительно высокой стойкостью против действия многих агрессивных факторов, наиболее часто встречающихся при эксплуатации зданий и сооружений. Тем не менее при неблагоприятных условиях они могут быстро разрушаться, и необходимы мероприятия, защищающие бетонные и железобетонные конструкции от преждевременного износа.
Различные виды цементов характеризуются различной стойкостью против действия тех или иных агрессивных факторов. Например, цементы с низким содержанием алюминатов кальция характеризуются повышенной стойкостью против действия гипса и других сульфатов и называются поэтому сульфатостойкими. Пуццолановые портландцементы отличаются повышенной водостойкостью и т.д. Поэтому выбирать цементы для бетонов различного назначения следует с учетом не только их прочностных показателей, но и стойкости против действия тех агрессивных сред, в которых должны работать бетонные конструкции.
В этой главе рассматриваются вопросы, связанные преимущественно с воздействием на цементы и бетоны мягких и минерализованных вод.
Проблема долговечности цементов и бетонов еще с конца XIX в. изучалась отечественными учеными, установившими причины и факторы коррозии и предложившими эффективные меры по увеличению стойкости (А. Р. Шуляченко, В. И. Чарномским, А. А. Байковым, В. А. Киндом, В. Н. Юигом и др.).
В. М. Москвин разделяет коррозионные процессы, возникающие в цементных бетонах при действии водной среды, по основным признакам на три группы. К первой группе (коррозия I вида) он относит процессы, протекающие в бетоне под действием вод с малой временной жесткостью. При этом некоторые составляющие цементного камня растворяются в воде и уносятся при ее фильтрации сквозь толщу бетона.
Ко второй группе (коррозия II вида) относятся процессы, развивающиеся в бетоне под действием вод, содержащих вещества, вступающие в химические реакции с цементным камнем. Образующиеся при этом продукты реакций либо легкорастворимы и уносятся водой, либо выделяются на месте реакции в виде аморфных масс, не обладающих вяжущими свойствами. К этой группе могут быть отнесены, например, процессы коррозии, связанные с воздействием на бетон различных кислот, магнезиальных и других солей.
В третьей группе (коррозия III вида) объединены процессы коррозии, вызванные обменными реакциями с составляющими цементного камня, дающими продукты, которые, кристаллизуясь в порах и капиллярах, разрушают его. К этому же виду относятся процессы коррозии, обусловленные отложением в порах камня солей, выделяющихся из испаряющихся растворов, насыщающих бетой.
Обычно на бетонные конструкции одновременно воздействуют многие агрессивные факторы, но один из них обычно является основным. Чаще всего это процессы, вызывающие коррозию II вида.
В. В. Кинд дает более подробную классификацию основных видов коррозии бетона под действием природных вод:
1) коррозия выщелачивания, вызываемая растворением гидроксида кальция, содержащегося в цементном камне, и выносом его из бетона;
2) кислотная коррозия — результат действия кислот при значениях показателя рН менее 7;
3) углекислотная коррозия, обусловленная действием на цементный камень углекислоты и являющаяся частным случаем кислотной коррозии;
4) сульфатная коррозия, подразделяемая на суль-фоалюмииатиую, вызываемую действием на цемент ионов SCXf при их концентрации от 250—300 до 1000 мг/л; сульфоалюминатно-пшсовую, также возникающую главным образом под действием сульфатных ионов SO-f» но. при концентрации их в растворе более 1000 мг/л, и гипсовую, которая происходит под действием воды, содержащей большое количество Na2S04 или KaSO4;
5) магнезиальная коррозия, подразделяемая на собственно магнезиальную, вызываемую действием катионов магния при отсутствии в воде ионов S04 и сульфатно-магнезиальную, происходящую в цементном камне при совместном действии на него ионов Mg2+ и SO4.
Все эти виды коррозии возможны в результате действия не только природных, но и промышленных и бытовых сточных вод. Кроме приведенных видов коррозии может иметь значение и кислотно-гипсовая коррозия под действием серной кислоты, а также сероводородная коррозия, имеющая свои особенности.
В условиях службы в промышленных, сельскохозяйственных и других зданиях и сооружениях бетоны могут подвергаться и другим разнообразным видам коррозии (действию щелочей и других веществ, животных жиров, растительных масел, углеводов, спиртов, фенолов и т.п.), что надо учитывать при использовании бетонов в конструкциях и защите их от повреждений.
В СНиП П-28-73 «Защита строительных конструкций от коррозии» установлены показатели степени агрессивности воды-среды с учетом содержания в ней бикарбонатов, а также плотности бетона и условий эксплуатации сооружений (фильтруемость грунтов, напор воды). Так, для бетонов «нормальной» плотности, изготовленных при В/Ц==0,6 и характеризующихся маркой по водонепроницаемости В-4, в условиях сильиофильтрующих грунтов вода-среда становится слабоагрессивной при би-карбонатной щелочности в пределах 1,4—0,7 мг«экв/л (или 4—2°). Увеличение ее содержания или плотности бетона уменьшает опасность коррозии 1-го вида.
Присутствие в водном растворе NaCl и Na2S04 повышает растворимость Са(ОН)2 в воде, который следовательно, быстрее вымывается из бетона.
Кислотная коррозия возникает под действием различных неорганических и органических кислот, вступающих в химическое взаимодействие с гидроксидом кальция, а также с другими соединениями цементного камня. Этот вид коррозии в зависимости от силы той или иной кислоты, определяемой показателями концентрации ионов водорода рН, может протекать очень интенсивно. Следует помнить, что цемент характеризуется высокой химической основностью составляющих и, следовательно, способен энергично взаимодействовать не только с кислотами, но и с такими солями, как А12(804), (NH4)2S04, FeCl3 и др., гидролизующимися с образованием сильных кислот.
Под действием той или иной кислоты на цементный камень образуются кальциевая соль и аморфные бессвязные массы §i02-aq, А1(ОН)з, Fe(OH)3. Для примера можно привести схему действия соляной кислоты на C3S2H3—основной гидросиликат цементного камня: 3CaO-2Si02-3H20 + mHCl-^3CaCl2 + 2Si02-a
Дата добавления: 2015-04-18 ; просмотров: 16 ; Нарушение авторских прав