- Простые опыты с водой. Домашние опыты для детей
- Опыты и эксперименты в домашних условиях: занимательная физика
- Как налить воду с горкой
- Повелитель воды
- Архимедова сила: что это такое и как действует
- «Эврика!» Открытие закона Архимеда
- Формула силы Архимеда
- Как действует сила Архимеда
- Сила Архимеда в жидкости: почему корабли не тонут
- Сила Архимеда в газах: почему летают дирижабли
- Когда сила Архимеда не работает
- Интересное по рубрике
- Найдите необходимую статью по тегам
- Подпишитесь на нашу рассылку
- Мы в инстаграм
- Рекомендуем прочитать
- Реальный опыт семейного обучения
Простые опыты с водой. Домашние опыты для детей
Опыты и эксперименты в домашних условиях: занимательная физика
Виталий Зарапин педагог, популяризатор науки, кандидат технических наук
Один из способов занять ребенка на каникулах — предложить ему провести простые опыты, например физические опыты с водой. В книге «Опыты Тома Тита. Удивительная механика» разных опытов и экспериментов собрано целых 50, и некоторые из них дети могут и проделать, и понять совершенно самостоятельно. Предлагаем два опыта по физике, которые вполне можно показывать как настоящие фокусы — если немного потренироваться.
Как налить воду с горкой
Горку можно соорудить практически из чего угодно — из песка, соли, сахара и даже из одежды. А можно ли сделать горку из воды? На первый взгляд кажется, что пример такой горки — волна. Однако она движется и существует только в движении. А соорудить горку из воды, не создавая волны, — задача сложная, но вполне разрешимая. Выполни следующий опыт, чтобы убедиться в этом!
Что потребуется:
- стеклянный стакан
- горсть монет (например, гаек, шайб или других небольших металлических предметов)
- вода (лучше холодная)
- растительное масло
Опыт. Возьми хорошо вымытый сухой стакан, немного смажь края растительным маслом и наполни водой до отказа. А теперь очень аккуратно опускай в него по одной монете (гайке, шайбе).
Результат. По мере опускания монет в стакан вода из него не будет выливаться, а начнёт понемногу приподниматься, образуя горку. Это хорошо заметно, если посмотреть на стакан сбоку.
По мере увеличения в стакане количества монет горка будет становиться всё выше — поверхность воды надуется, словно воздушный шарик. Однако на какой-то монете этот шарик лопнет, и вода струйками потечёт по стенкам стакана.
Объяснение. В этом опыте горка на поверхности воды образуется в основном за счёт физического свойства воды, называемого поверхностным натяжением. Его суть состоит в том, что на поверхности любой жидкости образуется тонкая плёнка из её частиц (молекул). Эта плёнка прочнее, чем жидкость внутри объёма. Чтобы её разорвать, необходимо приложить силу. Именно благодаря плёнке и образуется горка. Однако, если давление воды под плёнкой окажется очень большим (горка поднимется слишком высоко), она разорвётся.
Вторая причина образования горки — вода плохо смачивает поверхность стакана (холодная хуже, чем горячая). Что это значит? Взаимодействуя с твёрдой поверхностью, вода плохо к ней прилипает и плохо растекается. Именно поэтому она не стекает сразу же через край стакана при образовании горки. Кроме того, для уменьшения смачивания края стакана в опыте смазаны растительным маслом. Если бы, например, вместо воды использовали бензин, который очень хорошо смачивает стекло, никакой горки бы не получилось.
Повелитель воды
Предметы, плавающие на поверхности воды, движутся в каком-либо направлении по различным причинам: их могут подгонять ветер или волны, увлекать течение. А можно ли управлять плавающими предметами? Да, их можно подгонять рукой. А можно ли управлять, ничем их не касаясь? Конечно! Только для этого надо управлять свойствами воды. Как это можно сделать, ты узнаешь, проделав следующий опыт.
Что потребуется:
- коробок спичек
- миска с водой
- кусочек мыла
- кусочек сахара-рафинада
Опыт. В миску, наполненную водой, аккуратно положи 10-12 спичек. Расположи их в форме лучей звезды, по возможности равномерно.
Возьми кусочек мыла и погрузи концом в воду в центре спичечной звезды. Наблюдай за тем, что произойдёт со спичками. А теперь вместо мыла опусти в центр звезды кончик кусочка сахара-рафинада и посмотри, как спички поведут себя на этот раз.
Результат. Когда ты погрузишь в воду конец кусочка мыла, спички тут же начнут плыть от него к краям миски. Если заменить мыло кусочком рафинада, спички, наоборот, поплывут в обратном направлении и соберутся возле погружённого в воду сахара.
Объяснение. Такое поведение спичек обусловлен следующим: погружая в воду разные вещества (мыло и сахар), ты тем самым изменяешь одно из важных свойств воды — силу поверхностного натяжения.
Мыло сильно уменьшает поверхностное натяжение воды. Когда ты касаешься кусочком мыла поверхности жидкости, оно растворяется и смешивается с ней. Молекулы мыла проходят между молекулами воды и снижают их взаимное притяжение. Там, где ты касаешься мылом воды, поверхностное натяжение нарушается. А поверхностное натяжение в других участках тянет спички по направлению к стенкам, прочь от мыла.
Сахар действует противоположно мылу — он увеличивает поверхностное натяжение. Именно поэтому спички стягиваются в центр миски к погружённому в воду кусочку рафинада.
Источник
Архимедова сила: что это такое и как действует
Рассказываем, почему железные корабли не тонут, а воздушные шары летают, что такое «эврика» и при чём здесь Дональд Дак.
Гениальный учёный Архимед, живший в древнегреческих Сиракузах в III веке до нашей эры, прославился среди современников как создатель оборонительных машин, способных перевернуть боевой корабль. Другое его изобретение, «Архимедов винт», по сей день остаётся важнейшей деталью гигантских буровых установок и кухонных мясорубок. Мир обязан Архимеду революционными открытиями в области оптики, математики и механики.
Его личность окутана легендами, порой весьма забавными. С одной из них мы и начнём нашу статью.
«Эврика!» Открытие закона Архимеда
Однажды царь Сиракуз Гиерон II обратился к Архимеду с просьбой установить, действительно ли его корона выполнена из чистого золота, как утверждал ювелир. Правитель подозревал, что мастер прикарманил часть драгоценного металла и частично заменил его серебром.
В те времена не существовало способов определить химический состав металлического сплава. Задача поставила учёного в тупик. Размышляя над ней, он отправился в баню и лёг в ванну, до краёв наполненную водой. Когда часть воды вылилась наружу, на Архимеда снизошло озарение. Такое, что учёный голышом выскочил на улицу и закричал «Эврика!», что по-древнегречески означает «Нашёл!».
Он предположил, что вес вытесненной воды был равен весу его тела, и оказался прав. Явившись к царю, он попросил принести золотой слиток, равный по весу короне, и опустить оба предмета в наполненные до краёв резервуары с водой. Корона вытеснила больше воды, чем слиток. При одной и той же массе объём короны оказался больше, чем объём слитка, а значит, она обладала меньшей плотностью, чем золото. Выходит, царь правильно подозревал своего ювелира.
Так был открыт принцип, который теперь мы называем законом Архимеда:
На тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объёме погружённой части тела.
Эта выталкивающая сила и называется силой Архимеда.
Формула силы Архимеда
На любой объект, погружённый в воду, действует выталкивающая сила, равная весу вытесненной им жидкости. Таким образом, вес объекта, погружённого в воду, будет отличаться от его веса в воздухе в меньшую сторону. Разница будет равна весу вытесненной воды.
Чем больше плотность среды — тем меньше вес. Именно поэтому погрузившись в воду, мы можем легко поднять другого человека.
Выталкивающая сила зависит от трёх факторов:
- плотности жидкости или газа (p);
- ускорения свободного падения (g);
- объёма погружённой части тела (V).
Сопоставив эти данные, получаем формулу:
Как действует сила Архимеда
Поскольку сила Архимеда, действующая на тело, зависит от объёма его погружённой части и плотности среды, в которой оно находится, можно рассчитать, как поведёт себя то или иное тело в определённой жидкости или газе.
Если плотность тела меньше плотности жидкости или газа — оно будет плавать на поверхности.
Если плотности тела и жидкости или газа равны — тело будет находиться в безразличном равновесии в толще жидкости или газа.
Если плотность тела больше, чем плотность жидкости или газа, — оно уйдёт на дно.
Сила Архимеда в жидкости: почему корабли не тонут
Корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Но если корабль получит пробоину и пространство внутри заполнится водой, то общая плотность судна увеличится, и оно утонет.
В подводных лодках существуют специальные резервуары, заполняемые водой или сжатым воздухом в зависимости от того, нужно ли уйти на глубину или подняться ближе к поверхности. Тот же самый принцип используют рыбы, наполняя воздухом специальный орган — плавательный пузырь.
На тело, плотно прилегающее ко дну, выталкивающая сила не действует. Это учитывают при подъёме затонувших кораблей. Сначала судно слегка приподнимают, позволяя воде проникнуть под него. Тогда давление воды начинает действовать на корабль снизу.
Но чтобы поднять корабль на поверхность, необходимо уменьшить его плотность. Разумеется, воздух в получившем пробоину корпусе не удержится. Поэтому его заполняют каким-нибудь лёгким веществом, например, шариками пенополистирола.
Примечательно, что эта идея впервые пришла в голову не учёным, а авторам диснеевского комикса, в котором Дональд Дак таким образом поднимает со дна яхту Скруджа Макдака. Датский инженер Карл Кройер (Karl Krøyer), впервые применивший метод на практике, по собственному признанию вдохновлялся «Утиными историями».
Сила Архимеда в газах: почему летают дирижабли
В воздухе архимедова сила действует так же, как в жидкости. Но поскольку плотность воздуха обычно намного меньше, чем плотность окружённых им предметов, выталкивающая сила оказывается ничтожно мала.
Впрочем, есть исключения. Воздушный шарик, наполненный гелием, стремится вверх именно потому, что плотность гелия ниже, чем плотность воздуха. А если наполнить шар обычным воздухом — он упадёт на землю. Плотность воздуха в нём будет такая же, как у воздуха снаружи, но более высокая плотность резины обеспечит падение шарика.
Этот принцип используется в аэростатах — воздушные шары и дирижабли наполняют гелием или горячим воздухом (чем горячее воздух, тем ниже его плотность), чтобы подняться, и снижают концентрацию гелия (или температуру воздуха), чтобы спуститься. На них действует та же выталкивающая сила, что и на подводные лодки. Именно поэтому перемещения на аэростатах называют воздухоплаванием.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72021 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается архимедова сила.
Когда сила Архимеда не работает
- Если тело плотно прилегает к поверхности. Если между телом и поверхностью нет жидкости или газа — нет и выталкивающей силы. Именно поэтому подводным лодкам нельзя ложиться на илистое дно — мощности их двигателей не хватит, чтобы преодолеть давление толщи воды сверху.
- В невесомости. Наличие веса у жидкости или газа — обязательное условие для возникновения архимедовой силы. В состоянии невесомости горячий воздух не поднимается, а холодный не опускается. Поэтому на МКС создают принудительную конвекцию воздуха с помощью вентиляторов.
- В растворах и смесях. Если в воду налить спирт, на него не будет действовать сила Архимеда, хотя плотность спирта меньше плотности воды. Поскольку связь между молекулами спирта слабее, чем связь молекул воды, он растворится в воде, и образуется новая жидкость — водный раствор спирта.
У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.
Попробовать бесплатно
Интересное по рубрике
Найдите необходимую статью по тегам
Подпишитесь на нашу рассылку
Мы в инстаграм
Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством
Посмотреть
Рекомендуем прочитать
Реальный опыт семейного обучения
Звонок по России бесплатный
Пишите нам письма
Посмотреть на карте
Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.
Источник