При добыче нефти закачивают воду

Закачка воды (добыча нефти) — Water injection (oil production)

В нефтяной промышленности заводнение или закачка воды — это когда вода закачивается в нефтяной пласт для поддержания давления (также известного как замещение пустот) или для продвижения нефти к скважинам и, таким образом, увеличения добычи. Водонагнетательные скважины могут быть расположены на суше и на море для увеличения нефтеотдачи из существующего коллектора.

Обычно может быть извлечено только 30% нефти из коллектора, но закачка воды увеличивает извлечение (так называемый коэффициент извлечения) и поддерживает производительность пласта в течение более длительного периода.

Заводнение началось случайно в Питхоле, штат Пенсильвания, к 1865 году. Заводнение стало обычным явлением в Пенсильвании в 1880-х годах.

СОДЕРЖАНИЕ

Источники закачиваемой воды

Для инъекций можно использовать большинство источников объемной воды. Для добычи нефти используются следующие источники воды:

Пластовая вода часто используется в качестве закачиваемой жидкости. Это снижает вероятность повреждения пласта из-за несовместимых жидкостей, хотя риск образования накипи или коррозии в нагнетательных трубопроводах или насосно-компрессорных трубах сохраняется. Кроме того, добываемая вода, загрязненная углеводородами и твердыми частицами, должна быть утилизирована каким-либо образом, а сброс в море или реку потребует в первую очередь очистки водного потока. Однако обработка, необходимая для придания пластовой воде пригодности для повторной закачки, может быть столь же дорогостоящей.

Читайте также:  Как хранить серебряную воду

Поскольку объемы производимой воды никогда не могут быть достаточными для замены всех объемов добычи (нефти и газа в дополнение к воде), необходимо обеспечить дополнительную «подпиточную» воду. Смешивание воды из разных источников увеличивает риск образования накипи.

Морская вода может быть наиболее удобным источником для морских производственных объектов, и ее можно перекачивать на берег для использования на наземных месторождениях. По возможности водозабор размещают на достаточной глубине, чтобы снизить концентрацию водорослей; однако обычно требуются фильтрация, деоксигенация и биоциды.

Вода водоносного горизонта из водоносных пластов, отличных от нефтяного коллектора, но с той же структурой, имеет преимущество чистоты и химической совместимости, если таковая имеется. Однако это будет недопустимо, если водоносный горизонт является источником питьевой воды, как, например, в Саудовской Аравии.

Перед закачкой речная вода требует фильтрации и биоцида.

Фильтры

Фильтры очищают воду и удаляют загрязнения, такие как отложения, ракушки , песок, водоросли и другие биологические вещества. Типичная фильтрация составляет до 2 микрометров , но зависит от требований резервуара. После фильтрации остатки фильтрата достаточно мелкие, чтобы избежать закупорки пор резервуара. Песочные фильтры — это широко используемая технология фильтрации. Песчаный фильтр имеет пласты с песчаными гранулами разного размера. Вода проходит через первый, самый крупный слой песка до самого тонкого. Для очистки фильтра процесс обратный. После фильтрации вода поступает в колонну деоксигенации. Песочные фильтры громоздкие, тяжелые, на них просыпаются частицы песка, и для улучшения качества воды требуются химические вещества. Более сложный подход заключается в использовании автоматических самоочищающихся сетчатых фильтров с обратной промывкой (сканирование на всасывании).

Важность правильной очистки воды имеет решающее значение; особенно в случае речной и морской воды, качество забираемой воды может значительно различаться (весеннее цветение водорослей, штормы и течения, поднимающие отложения с морского дна), что может существенно повлиять на работу водоочистных сооружений. Это может привести к плохому качеству воды, биологическому забиванию пласта и снижению добычи нефти.

Деоксигенация

Кислород необходимо удалять из воды, поскольку он способствует коррозии и росту некоторых бактерий . Рост бактерий в коллекторе может привести к образованию сероводорода , что является источником производственных проблем, и может заблокировать поры в породе.

Дезоксигенирование башни приносит впрыска воды в контакт с потоком газа (газ легко доступен в месторождении нефти). Отфильтрованная вода стекает по колонне деоксигенации, разбрызгиваясь на ряд тарелок или насадок, вызывая перенос растворенного воздуха в поток газа.

Альтернативный или дополнительный метод, также используемый в качестве резервного для колонн деоксигенации, заключается в добавлении агента, поглощающего кислород, такого как бисульфит натрия и бисульфит аммония.

Другой вариант — использовать мембранные контакторы. Мембранные контакторы приводят воду в контакт с потоком инертного газа, такого как азот, для удаления растворенного кислорода. Мембранные контакторы обладают меньшим весом и компактностью, что позволяет создавать системы меньшего размера.

Насосы для нагнетания воды

Нагнетательные насосы высокого давления и высокого расхода расположены рядом с колонной деоксигенации и подкачивающими насосами. Они заполняют дно резервуара фильтрованной водой, чтобы толкать масло к скважинам, как поршень . Результат укола не быстрый, для этого нужно время.

Установки закачки воды

Конфигурация описанных выше элементов установки и условия их эксплуатации описаны в этом разделе. Это бывшая установка Amoco North West Hutton и установка Buzzard в Северном море.

North West Hutton

Система закачки воды имела два варианта конструкции.

  • Случай A — Закачка 100 000 баррелей воды в день (BWPD) (662 м 3 / час), нагнетательные насосы, работающие параллельно, с давлением нагнетания 3000 фунтов на квадратный дюйм (207 бар)
  • Вариант B — 60 000/65 000 баррелей в сутки (397/431 м 3 / час), насосы включены последовательно / параллельно, давление нагнетания 3000 фунтов на кв. Дюйм (207 бар) и 30 000/35 000 баррелей в сутки (198/232 м 3 / час) при давлении нагнетания 5000 фунтов на квадратный дюйм (345 бар)

Два рабочих подъемных насоса забортной воды подавали воду со скоростью 1 590 м 3 / час и давлением 30,5 фунтов на кв. Дюйм (2,1 бар изб.) В фильтры забортной воды. Они состояли из шести двойных фильтрующих слоев (гранат и антрацит). Нормальный поток был нисходящий. Обратный поток воды и воздуха был направлен вверх, при этом промывочная вода сбрасывалась за борт. Обратная промывка инициировалась высоким перепадом давления на фильтрующем слое.

Отфильтрованная вода направлялась в верхнюю часть деаэратора. Это был вертикальный сосуд высотой 12,6 м и диаметром 4,0 м, внутри которого находился насадочный слой. Воздух удалялся из воды восходящим потоком топливного газа, газ / воздух направлялся от верхней части сосуда к факелу. Поглотитель кислорода вводили в сосуд деаэратора для удаления любого остаточного кислорода. Деаэрированная вода забиралась из дна сосуда деаэраторными насосами и направлялась в коллектор холодной воды, работающий под давлением 90 фунтов на квадратный дюйм (6,2 бар изб.).

Охладители технологических процессов и бытовые охладители подавались из коллектора холодной воды, теплая вода из охладителей направлялась в барабан дегазации, где удалялись воздух или газ. Из барабана дегазации вода поступала на инжекторные фильтры.

Вода фильтровалась в фильтрах для впрыска воды, один рабочий и один в режиме ожидания / обратной промывки. Из фильтров вода направлялась к насосам для закачки воды.

Каждый из трех нагнетательных насосов имел производительность 221 м 3 / час с перепадом напора 2068,5 метров (209 бар). Насосы нагнетают давление в коллектор на 3000 фунтов на квадратный дюйм и на устье скважины. Одиночный подкачивающий насос для нагнетания воды (221 м 3 / час, дифференциальный напор 1379 м (139 бар)) принимал всасывание из нагнетательного патрубка нагнетательных насосов и нагнетал его в коллектор на 5000 фунтов на квадратный дюйм (345 бар) и устья скважин.

Было восемь водонагнетательных скважин, каждая из которых имела производительность 15 000 баррелей в сутки (99,4 м 3 / час).

Канюк

Альтернативная конфигурация и технология используются на месторождении Buzzard в Северном море. Подъемные насосы забортной воды подают 4 000 м 3 / ч при давлении 12 бар изб. На установку грубой фильтрации морской воды. После фильтрации вода используется для охлаждения охлаждающей среды в пластинчатых теплообменниках охлаждающей среды. 2322,7 м 3 / ч морской воды теперь под давлением 6 бар изб. И 20 ° C направляется на фильтры тонкой очистки, а затем на мембрану для удаления сульфата, где используется обратный осмос для удаления ионов сульфата из воды.

Десульфатированная вода поступает в верхнюю часть деаэраторной колонны, которая работает при частичном вакууме (0,3 бар абс.), Поддерживаемом вакуумной установкой деаэратора. Внутри деаэратора имеется три насадочных слоя. Деаэрированная вода забирается из основания деаэратора перекачивающими насосами, которые подают 1632 м 3 / час при давлении 3,6 бар изб. В расширительный барабан дегазатора. Из уравнительного барабана вода поступает в нагнетательные насосы, которые подают воду с производительностью до 250 000 баррелей в сутки в 11 водонагнетательных скважин.

Пластовая вода также закачивается в пласт до 350 000 баррелей в сутки.

Водонагнетательные скважины

В таблице показано количество водонагнетательных скважин на некоторых морских установках, в основном в Северном море.

Источник

Как добывают нефть

Недавно прочитал сообщение, что мэр Москвы Сергей Собянин открыл Музей нефти на Сретенском бульваре. «В Москве нет нефтяных вышек, нефтяных месторождений, но у нас есть огромные отряды людей, которые двигают академическую науку, прикладную, образование, которое работает в значительной части на нефтяную отрасль страны, делая ее передовой», — подчеркнул на открытии мэр Москвы Сергей Собянин.

Молодец, Сергей Семёнович. И дело хорошее сделал – музей открыл, и слова хорошие сказал, вот только несмотря на то, что долгое время проработал на руководящих должностях в нефтедобывающих регионах, немного ошибся с терминологией. «Нефтяных вышек» нет не только в Москве, их нет нигде в мире. Есть буровые вышки (см. фото вверху), являющиеся частью буровых установок, а нефтяных нет. А что же тогда есть?

А вот о том, какими способами и с помощью какого оборудования добывают нефть в России и мире я и постараюсь максимально доступным языком рассказать и наглядно показать в своей статье. (На фотографии вверху — буровая площадка в окрестностях Нарьян-Мара. Снимок не очень качественный, поскольку сделан автором через иллюминатор вертолёта).

Начну с того, что нефть добывают из скважин. Скважина – это цилиндрическая горная выработка (отверстие в земле), незначительного диаметра и большой глубины, предназначенная для подъёма жидкости (вода, нефть) или газа на поверхность.

Диаметр нефтяных скважин, как правило, ступенчато уменьшается от устья (выход скважины на поверхность) до забоя (дно скважины). Диаметр скважин начинается от 40 мм и редко бывает больше 900 мм. Средняя глубина нефтедобывающих скважин в России 2500 м. В скважины спускают специальные трубы, называемые обсадными, чтобы предохранить стенки скважин от обрушения.

В зависимости от геологических условий нефтяного месторождения бурят различные типы скважин:

Длиной скважины называется расстояние между устьем и забоем, измеряемое по оси ствола. Глубиной является проекция длины скважины на её вертикальную ось. Для вертикальных скважин эти значения одинаковы, а вот для наклонно-направленных и горизонтальных – различаются.

Нефтяные скважины бурят как на суше, так и на море, но сегодня мы бурения касаться не будем, а перейдём сразу к способам добычи нефти или, как выражаются нефтедобытчики, к способам эксплуатации скважин.

В настоящее время применяются только два основных способа эксплуатации скважин:

  • фонтанный (когда нефть извлекается из скважины самоизливом) и
  • механизированный (который, в свою очередь, подразделяется на газлифтный и насосный).

Выбор способа эксплуатации нефтяных скважин, в первую очередь, зависит от величины пластового давления и глубины залегания продуктивного (т.е. нефтеносного) пласта. Кроме того, на выбор способа эксплуатации может влиять состав нефти, степень её обводненности (т.е. % содержания воды), напор жидкости в стволе скважины и ряд других факторов.

Фонтанный способ добычи нефти

Данный способ применяется при высоком пластовом давлении. В этом случае нефть фонтанирует, поднимаясь на поверхность по насосно-компрессорным трубам (НКТ) за счет энергии пласта. Фонтанирование может происходить за счёт гидростатического напора (очень редко) или за счет энергии расширяющегося газа (в большинстве случаев, поскольку находящийся вместе с нефтью в пласте газ играет главную роль в фонтанировании скважины).

К преимуществам такого способа относится его высокая экономичность, поскольку подъем происходит естественным путем, что не требует применения дорогостоящего нефтедобывающего оборудования, позволяя тем самым сэкономить как на его стоимости, так и на техническом обслуживании.

Оборудование любой скважины, включая фонтанную, должно обеспечивать добычу продукции в заданном режиме и безопасное проведение всех необходимых технологических операций. Оно подразделяется на скважинное (подземное) и устьевое (наземное).
Для фонтанного способа добычи нефти требуется технологически простое наземное и подземное оборудование.

Из подземного оборудования в скважину спускают НКТ с воронкой на конце для удобства спуска-подъёма исследовательских приборов. Колонна НКТ состоит из стальных бесшовных труб длиной 5 – 10 м, соединённых между собой резьбовыми муфтами. Диаметр НКТ варьируется от 27 мм до 114 мм, толщина стенки от 3 мм до 7 мм. НКТ – основной рабочий инструмент при эксплуатации скважин. Эксплуатационная обсадная колонна, как правило, спускается в скважину, цементируется от забоя до устья, и больше не поднимается на поверхность, поэтому все подземные операции выполняются с помощью НКТ: подъём скважинной жидкости на поверхность, ремонтные и промывочные работы и т.д.

В качестве наземного оборудования на устье скважины устанавливается фонтанная арматура (ФА). ФА предназначена для подвески колонны НКТ, герметизации межтрубного (затрубного) пространства, для эксплуатации, регулирования режима работы и ремонта скважины, а также для направления продукции скважины в выкидную линию (т.е. трубу по которой нефть поступает из скважины к замерной установке).

Обслуживают скважины операторы добычи нефти и газа

Фонтанный способ эксплуатации нефтяных скважин применяется на начальном этапе разработки месторождений. По завершению процесса фонтанирования, на скважине начинают применять механизированные методы добычи.

Газлифтный способ добычи нефти

Газлифт является одним из механизированных способов добычи нефти и логическим продолжением фонтанного способа и, в принципе, мало чем от него отличается. При его использовании нефть поднимается из забоя за счет энергии газа, нагнетаемого с устья. На этот способ переходят тогда, когда энергии пласта становится недостаточно для выталкивания нефти, поэтому её подъем начинают осуществлять с помощью подкачки в пласт сжатого газа.

Для сжатия газа используют компрессоры высокого давления. Этот способ называют компрессорным. Бескомпрессорный способ газлифта осуществляют методом подачи в пласт газа, уже находящегося под высоким давлением. Такой газ подводят с ближайшего месторождения.

Несмотря на то, что данный способ отличает простота обслуживания скважин, и он максимально удобен для подъема больших объемов нефти с высоким содержанием газа, он становится всё менее востребованным из-за того, что требует больших затрат на строительство компрессорных станций и газопроводов высокого давления. В настоящее время газлифтным способом добывается не более 5% нефти в России.

В этом ролике (4 минуты) от компании Weatherford очень наглядно (и, главное, без единого слова), показаны технологии, применяемые при газлифтной добыче нефти:

Насосные способы добычи нефти

К насосным способам механизированной добычи нефти относят, как несложно догадаться, добычу нефти при помощи различных видов насосных установок. Обратите внимание, что речь идёт именно об «установках», поскольку кроме, собственно, насоса необходимо и другое погружное (т.е. монтируемое в скважине) и наземное оборудование.

В настоящее время для добычи нефти применяются различные скважинные насосные установки:

  1. установка штангового глубинного насоса (УШГН) или скважинная штанговая насосная установка (СШНУ)
  2. установка электрического центробежного насоса (УЭЦН)
  3. установка электроприводного винтового насоса (УЭВН)
  4. установка электроприводного лопастного насоса (УЭЛН)
  5. различные виды скважинных гидропоршневых насосных установок (ГПНА):
  • струйные
  • гидроимпульсные
  • турбонасосные
  • вибрационные.

В рамках данной статьи мы рассмотрим только первые три, как самые распространённые.

Добыча нефти при помощи установки штангового глубинного насоса (УШГН)

Да, да, да. Это именно та самая, всем известная «качалка», фотографию которой наиболее часто используют, когда говорят о нефтедобыче. Это обусловлено, с одной стороны, тем, что УШГН – самый старый и наиболее распространенный в мире вид механизированной эксплуатации нефтяных скважин, а, с другой стороны, тем, что это наиболее «фактурное» нефтедобывающее оборудование.

Для понимания распространённости. Во всем мире сейчас находится в эксплуатации около 2 миллионов нефтяных скважин. УШГН оснащены примерно 750 000 из более чем 1 миллиона скважин, где применяют тот или иной способ механизированной добычи.

УШГН действует по принципу поршневого устройства: при помощи возвратно-поступательных движений наземного привода через колонну насосных штанг глубинный насос поднимает нефть к поверхности. Станок-качалка приводится в движение при помощи электрического двигателя через клиноременную передачу. Также применяются и другие типы приводов для ШГН: цепной привод, гидравлический привод, длинноходовой привод, но назначение у всех одно – привести в движение колонну штанг, обеспечив работу глубинного насоса.

Из всех просмотренных мной на youtube роликов про принцип работы УШГН (на русском языке), именно этот показался мне наиболее предпочтительным с точки зрения доступности, полноты изложения, визуализации и длительности (5 минут):

Добыча нефти при помощи установки электрического центробежного насоса (УЭЦН)

На фотографии вверху видна фонтанная арматура скважины, оснащённой УЭЦН. Сначала объясню, для чего нужны УЭЦН, если есть «качалки». Дело в том, что у УШГН (СШНУ) есть много недостатков, которых лишены УЭЦН, а именно:

  • невозможность эксплуатации высокодебитных скважин, т.е. скважин, дающих большие объёмы нефти;
  • низкая эффективность добычи нефти с большим содержанием воды;
  • громоздкое и металлоёмкое наземное оборудование;
  • высокая вероятность обрыва насосных штанг (особенно в наклонных и горизонтальных скважинах).

По статистике, доля скважин в России, оборудованных УШГН,— 34%. На УЭЦН приходится 63% скважин, при этом 82% нефти в стране добывается именно с помощью УЭЦН, что говорит о большей эффективности именно этого способа.

Основные компоненты УЭЦН:

  • электроцентробежный насос (ЭЦН)
  • погружной электродвигатель
  • гидрозащита (протектор)
  • газосепаратор (опционально)
  • кабельная линия
  • наземная станция управления (СУ)

Погружной электроцентробежный насос внешне ничем не отличается от трубы, но внутренняя полость такой трубы (т.е. корпуса насоса) содержит большое количество сложных в изготовлении деталей. (См. рисунок ниже. Изображение взято с сайта компании «Новомет»)

ЭЦН приводится в действие с помощью электродвигателя, расположенного в скважине (поэтому он и называется «погружным»). Подвод электроэнергии к нему осуществляется по погружному бронированному кабелю. Электродвигатель может быть асинхронным (магнитное поле создается статором двигателя) или вентильным (магнитное поле создается постоянными магнитами, находящимися в роторе двигателя), который имеет более высокий КПД. Управление погружной установкой производится через станцию управления (СУ). Применяются СУ прямого пуска, а также СУ с возможностью регулирования частоты вращения погружного электродвигателя.

В этом кратком (1 минута) ролике от компании Weatherford очень наглядно (и, главное, без единого слова), показан принцип работы УЭЦН:

Для вашего удобства, привожу перевод терминов, использованных в ролике:

Electric Submersible Pumping System — установка электрического центробежного насоса (УЭЦН)
Motor — погружной электродвигатель
Seal — гидрозащита
Gas Separator — газосепаратор
Submersible Pump – погружной электроцентробежный насос (ЭЦН)
Gas — газ
Oil – нефть

Добыча нефти при помощи установки электроприводного винтового насоса (УЭВН)

Винтовой насос – это насос объёмного действия, подача которого прямо пропорциональна частоте вращения специального винта. При вращении винт (ротор) и его обойма (статор) образуют по всей длине ряд замкнутых полостей, которые передвигаются от приёма насоса к его выкиду. Вместе с ними перемещается и откачиваемая жидкость.

Существует два варианта применения винтовых насосов для добычи нефти.
При первом (как на картинке вверху), который получил наибольшее распространение, электродвигатель и редуктор монтируются на устье скважины и связаны между собой ременной передачей. Обойма винтового насоса спускается в скважину на НКТ, а винт крепится к штангам, которые вращаются электродвигателем через редуктор.

При втором варианте (набирает популярность), схема установки УЭВН аналогична УЭЦН, т.е. винтовой насос приводится в действие погружным электродвигателем, который передаёт крутящий момент напрямую на вал винтового насоса через протектор. Благодаря приводу от погружного электродвигателя, в такой установке не применяются насосные штанги и редуктор, являющийся самым ненадёжным и дорогостоящим компонентом традиционной УЭВН.

УЭВН применяются, главным образом, в скважинах с высоковязкой нефтью.

В этом ролике от компании Weatherford «Progressing Cavity Pumping System» показан принцип работы УЭВН (достаточно посмотреть первые 2 мин.):

Источник

Оцените статью