Промежуточный теплообменник вода гликоль подбор

Содержание
  1. Теплообменники Вода — Гликоль от производителя
  2. Каталог теплообменников Вода — Гликоль
  3. Разборные
  4. Паяные
  5. Сварные
  6. Спиральные
  7. Кожухопластинчатые
  8. Кожухотрубные
  9. Цены на теплообменники Вода Гликоли
  10. Сферы использования теплообменников Вода — Гликоль
  11. Что мы предлагаем?
  12. Сферы применения, устройство и принцип работы гликолевого рекуператора воздуха: узел обвязки и расчет энергоэффективности системы
  13. Что из себя представляет гликолевый рекуператор воздуха?
  14. Как работает: принцип действия и устройство
  15. Как выглядит?
  16. Когда и для чего нужен?
  17. Отзывы о гликолевых рекуператорах воздуха: плюсы и минусы
  18. Узел обвязки с наличием дополнительного оборудования
  19. Что учитывать при выборе?
  20. Расчет КПД и энергоэффективности для выбора оптимального оборудования
  21. Расчет теплообменника пластинчатого
  22. Подробнее об исходных данных для расчета
  23. Получить консультацию
  24. Рассчитаем по параметрам
  25. Есть готовый расчет теплообменника?
  26. ОСТАВЬТЕ ЗАПРОС и наш специалист поможет подобрать оборудование
  27. Виды технического расчета теплообменного оборудования
  28. Тепловой расчет
  29. Конструктивный расчет
  30. Гидравлический расчет
  31. ОСТАВЬТЕ ЗАПРОС и наш специалист поможет подобрать оборудование
  32. Как проверить правильность расчета пластинчатого теплообменника?
  33. Пример расчета пластинчатого теплообменника
  34. Как рассчитать пластинчатый теплообменник (видео)

Теплообменники Вода — Гликоль от производителя

Теплообменники Вода-Гликоль — это специальные устройства для нагрева или охлаждения между такими жидкостями как: Вода, Этиленгликоли и Пропиленгликоль. Представляют собой компактные прямоугольные устройства с отверстиями для потоков. Основными элементами процессов нагревания и охлаждения являются пластины.

Купить теплообменник Вода Гликоль вы можете несколькими способами:

  • Позвонить по единому телефону в разделе контактов.
  • Заказать обратный звонок на сайте, перезвоним через минуту.
  • Отправить заявку на электронную почту [email protected]

Каталог теплообменников Вода — Гликоль

Разборные

Паяные

Сварные

Спиральные

Кожухопластинчатые

Кожухотрубные

Разборные пластинчатые гликолевые теплообменники, подходяn для любых коммунальных и промышленных трубопроводных систем.

Паяные пластинчатые теплообменники для различных типов гликолей отличаются компактностью и более низкой стоимостью.

Пластины, прокладки и другие детали используемые для обслуживания и модернизации гликолевых теплообменных агрегатов высокого качества.

В нашем каталоге теплообменных аппаратов представлены разборные и паяные экземпляры, специально предназначенные для работы с различными гликолями и водяными растворами. Широкий ассортимент моделей позволит вам выбрать самый (наилучший) вариант для ваших требований.

Цены на теплообменники Вода Гликоли

Цены на теплообменные аппараты Вода Гликоль указаны именно на модели ниже, они представлены для ознакомления. Расчёт стоимости осуществляется индивидуально, предоставьте данные и получите цену именно на ваш теплообменник.

Исходные параметры: Поступающая из городской ТЭЦ горячая вода температурой 95 градусов. По нагреваемой стороне циркулирует антифриз из внутренней системы отопления.
Решение: Оптимальный теплообменник средних габаритов, имеющий в комплекте 18 пластин.

Для данной задачи идеально подойдёт:
Модель A1L

Цена: 42 400 руб. с НДС и доставкой по России

Исходные параметры: Поступающая из городской ТЭЦ горячая вода температурой 95 градусов. По нагреваемой стороне циркулирует антифриз из внутренней системы отопления.
Решение: Оптимальный теплообменник средних габаритов, имеющий в комплекте 18 пластин.

Для данной задачи идеально подойдёт:
Модель A1L

Цена: 42 400 руб. с НДС и доставкой по России

Сферы использования
теплообменников Вода — Гликоль

Теплообменники для работы с этиленгликолем активно используются в различных системах:

  • Отопление жилых и производственных зданиях. В отопительных системах в роли теплоносителя используется раствор этиленгликоля, который может быть горячим потоком, чтобы нагреть воду или холодным потоком, чтобы нагреться от горячей воды.
  • Теплообменники для тепловых процессов с пропиленгликолем применяются часто в пищевом производстве.

Что мы предлагаем?

Инженеры нашей компании подберут оборудование в рамкам выделенного вами бюджета, предлагая несколько альтернативных вариантов под вашу задачу.

Расчёт теплообменника или подбор насоса осуществляется от 15 минут с момента заявки, в зависимости от сложности ситуации.

Мы предлагаем продукцию напрямую с производственной линии обходя посредников, реализуем продукцию с максимальными скидками.

Стандартная гарантия составляет 2 года с момента поставки. Так же предусмотрена система расширенной гарантии в зависимости от заказа.

После поступления заявки за вами закрепляется постоянный специалист. Он будет вас консультировать при каждом обращении в нашу компанию.

Высокое качество наших товаров подтверждено международными сертификатами. На 97% исключён выход из строя оборудования на протяжении всего срока службы.

Наша отлаженная с годами логистика позволяет вам не тратить деньги на доставку. Все заказы доставляются БЕСПЛАТНО по территории России.

После оплаты вам на E-mail высылается трек-номер для самостоятельного отслеживания вашего товара от точки отправления до места назначения.

Источник

Сферы применения, устройство и принцип работы гликолевого рекуператора воздуха: узел обвязки и расчет энергоэффективности системы

Системы вентиляции с рекуперацией тепла становятся все более популярными. Один из интересных видов теплообменников — гликолевый рекуператор. Этот вид рекуперации привлекает тем, что может соединить две системы вентиляции — приточную и вытяжную. При этом есть возможность подключения нескольких каналов даже при удалении друг от друга.

Что из себя представляет гликолевый рекуператор воздуха?

Это устройство, перерабатывающее тепловую энергию посредством циркуляции в системе незамерзающей жидкости. В качестве такой жидкости может использоваться антифриз или раствор этиленгликоля с водой.

Два теплообменника соединяются между собой замкнутым контуром, по которому передается гликолевый раствор. Загрязнения и запахи из потоков не перемешиваются между собой и не передаются благодаря замкнутому контуру.

Как работает: принцип действия и устройство


Рассмотрим устройство и принцип работы гликолевого рекуператора.

  1. Два теплообменника соединены между собой в замкнутую систему, по которой совершает циркуляцию теплоноситель (водно-гликолевый раствор).
  2. Первый теплообменник забирает тепло из потока приточного воздуха и с помощью раствора перемещает тепло во второй теплообменник.
  3. Здесь антифриз отдает тепло приточному воздуху.
  4. В теплое время года энергию рекуператора можно использовать не на обогрев, а на кондиционирование воздуха.

При использовании в холодное время года на бойлере вытяжного канала может образоваться конденсат. Для него необходимо оборудовать емкость для сбора и отвода конденсата.

Помимо этого, за теплообменником устанавливают каплеуловитель, чтобы капли влаги не попадали в воздушный поток. Фильтр грубой очистки воздуха, помещенный в вентиляционный канал приточного теплообменника, предотвратит загрязнение воздуха.

Как выглядит?

Когда и для чего нужен?

Существуют сферы, где гликолевый рекуператор активно применяется.

  • В двухконтурных системах.
  • В случаях, когда приточный и выходящий потоки не должны перемешиваться.
  • При взаимодействии со взрывоопасными газами.
  • На больших площадях торговых центров и различных производственных помещений, где на разных участках должна поддерживаться разная температура воздуха.

Использование рекуператора позволяет объединить в одно целое две вентиляционные системы, в которых потоки воздуха не соприкасаются.

Возможности гликолевого рекуператора:

  1. Можно подсоединить несколько притоков в одну вытяжку и наоборот.
  2. Между притоком и вытяжкой может быть значительное расстояние — до 800 метров.
  3. Автоматическая регуляция системы.
  4. Использование в морозы, так как система не замерзает благодаря антифризу или гликолевому раствору.
  5. Приточная и вытяжная системы не смешиваются, между ними отсутствует влагообмен.

Отзывы о гликолевых рекуператорах воздуха: плюсы и минусы

По мнению пользователей, использование гликолевого рекуператора имеет свои преимущества и недостатки.

Преимущества Недостатки
Возможность удаленного расположения теплообменников. Низкий КПД.
Использование системы в зимний период, так как теплоноситель не замерзает. Требуется индивидуальный расчет.
Отсутствие подвижных частей, что существенно снижает риск поломок. Затраты на электроэнергию, необходимую для работы насоса.
Регулировка скорости воздушного потока. Узел обвязки включает в себя контрольно-измерительные устройства, которые требуют грамотного технического обслуживания.
Возможность использования нескольких приточных и вытяжных потоков.
Потоки воздуха входящего и выходящего воздуха не смешиваются.
Срок окупаемости системы — от 0,5 до 2 лет.

Узел обвязки с наличием дополнительного оборудования

Поскольку гликолевый рекуператор состоит из двух теплообменников, то именно для их соединения и служит смесительный узел. Он регулирует потоки незамерзающей жидкости в контуре и обеспечивает необходимый расход тепловой энергии, чтобы максимально передать тепло от вытяжного воздуха приточному.

Узел обвязки предназначен для правильной работы приточно-вытяжной системы вентиляции с гликолевым рекуператором. Он включает в себя необходимые элементы, которые нужны для работы системы. В состав узла обвязки гликолевого рекуператора входят:

  • трехходовой клапан,
  • электропривод,
  • насос,
  • грязевик,
  • обратный клапан,
  • шаровые краны,
  • термоманометры,
  • расширительный бачок,
  • сливной кран,
  • воздухоотводчик.

  • Трехходовой клапан регулирует максимальную производительность посредством смешивания в нужном количестве потоков гликоля. В случае переохлаждения одного из теплообменников, он добавляет в контур более нагретую жидкость, чтобы не допустить обмерзания калорифера.
  • Циркуляционный насос обеспечивает необходимый расход пропиленгликоля, нужный для передачи тепла.
  • Электропривод позволяет регулировать степень открытия и закрытия трехходового крана.
  • Термоманометры позволяют следить за состоянием температуры и давления на разных участках системы.

В состав узла входит так называемая группа безопасности. В нее входят:

  • воздухоотводчик,
  • расширительный бак,
  • предохранительный клапан.

Они также имеют свои функции.

  • Воздухоотводчик автоматически выводит воздух, попавший в контур при его заполнении.
  • Расширительный бак необходим для компенсации излишка жидкости в системе при резком изменении температуры.
  • Предохранительный клапан необходим для безопасности. Он срабатывает в случае повышения давления выше заданного.

Шаровые краны устанавливаются для того, чтобы производить замену некоторых элементов, не сливая всю систему, а просто перекрыв ее.

Обычно узел обвязки ставится на вентиляционные системы средней и большой производительности от 5000 до 100000 м 3 /час. Для удобного и быстрого соединения элементы могут связаны между собой гофрированными гибкими подводками.

Правильно собранный и установленный узел обвязки позволяет

  • значительно повысить КПД рекуператора,
  • предотвратить его обмерзание.

Что учитывать при выборе?

При выборе и установке гликолевого рекуператора нужно учитывать некоторые факторы.

  • Величина площади обслуживания системы вентиляции.
  • Необходимый расход теплоносителя (учитывается плотность раствора гликоля).
  • Расчет КПД и затрат энергии.
  • Обязательно наличие регулярного технического обслуживания.

Расчет КПД и энергоэффективности для выбора оптимального оборудования

Чтобы с максимальной эффективностью использовать оборудование, необходимо сделать расчет КПД и тепловой энергии. Этим занимаются специальные фирмы. Но можно произвести такой расчет и самостоятельно, по формуле расчета для гликолевых рекуператоров.

Затраты энергии, необходимой для нагрева или охлаждения приточного воздуха, рассчитываются по формуле:

  • 0,335 — постоянный коэффициент,
  • L — расход воздуха,
  • tнач — температура входящего воздуха,
  • tкон — температура выходящего воздуха.

Например, расход воздуха вентиляционной системы — 10000 м 3 , температура входящего воздуха — 20 о С, температура на выходе — +20 о С. Произведем необходимый расчет: Q = 0,335*10000*(20-(-20)) = 134000Вт.

Для расчета энергоэффективности рекуператора используют формулу:

  • Q — затраты энергии на охлаждение или нагрев воздуха,
  • n — ожидаемый КПД рекуператора.

Например, Е = 134000*60% = 80400 Дж.

Особенно они необходимы при работе с взрывоопасными газами, при минусовой температуре, при удаленности приточной и вытяжной вентиляции друг от друга, когда потоки воздуха не должны смешиваться.

Грамотно сделанный индивидуальный расчет поможет повысить КПД рекуператора и его эффективность. Установка рекуперации позволяет экономить средства и за короткое время полностью себя окупает.

Источник

Расчет теплообменника пластинчатого

Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.

Данные теплообменника, которые нужны для технического расчета:

  • тип среды (пример вода-вода, пар-вода, масло-вода и др.)
  • тепловая нагрузка (Гкал/ч) или мощность (кВт)
  • массовый расход среды (т / ч) — если не известна тепловая нагрузка
  • температура среды на входе в теплообменник °С (по горячей и холодной стороне)
  • температура среды на выходе из теплообменника °С (по горячей и холодной стороне)

Для расчета данных также понадобятся:

    • из технических условий (ТУ), которые выдает теплоснабжающая организация
    • из договора с теплоснабжающей организацией
    • из технического задания (ТЗ) от гл. инженера, технолога

Подробнее об исходных данных для расчета

  1. Температура на входе и выходе обоих контуров.
    Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник.
  2. Максимально допустимая рабочая температура, давление среды.
    Чем хуже параметры, тем ниже цена. Параметры и стоимость оборудования определяют данные проекта.
  3. Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
    Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту.
    Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913.
  4. Тепловая мощность (Р, кВт).
    Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше):
    P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 — t2).
  5. Дополнительные характеристики.
    • для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
    • средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура)
      и ΔT2 = T2 (вход холодного контура) — T3 (выход холодного контура);
    • уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.

Подбор и расчет стоимости теплообменника удобным для вас способом

Получить консультацию

Рассчитаем по параметрам

Делаем расчёт точно и профессионально, без всяких манипуляций

Есть готовый расчет теплообменника?

Рассчитаем стоимость по номеру расчета, серийному номеру, расчетному листу, спецификации, по шильдику теплообменника

Откуда взять расчетные данные для ПТО?

Расчетные данные (нагрузки, давления, температурные графики) выдаются теплоснабжающими организациями (тепловыми сетями, котельными) в виде пояснительных записок, Технических условий (ТУ).

Также эти данные вы можете взять из договора с теплоснабжающей организацией, или из проекта модернизации или переоборудования ИТП, УУТО. Если у вас остались вопросы по данным для расчета, то можно обратиться к менеджеру за консультацией.

ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование

Виды технического расчета теплообменного оборудования

Тепловой расчет

Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.

Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.

Давайте рассмотрим пример общего расчета.

В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.

Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],

Gг,х – расход горячего и холодного теплоносителей [кг/ч];
сг,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C];

При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:

r – теплота конденсации [Дж/кг];
сп,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
tк – температура конденсата на выходе из аппарата [°C].

Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:

Благодаря данной формуле определяем расход теплоносителя:

Формула для расхода, если нагрев идет паром:

G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
tг,х н – начальная температура горячего и холодного теплоносителей [°C];
tг,х к – конечная температура горячего и холодного теплоносителей [°C].

Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:

∆tср = (∆tб — ∆tм) / ln (∆tб/∆tм) где ∆tб, ∆tм – большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆tср = ∆tср ·fпопр . Коэффициент теплопередачи может быть определен следующим образом:

δст – толщина стенки [мм];
λст – коэффициент теплопроводности материала стенки [Вт/м·град];
α1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
Rзаг – коэффициент загрязнения стенки.

Конструктивный расчет

В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.

Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.

Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:

F = Q/ k·∆tср [м 2 ]

Размер проходного сечения теплоносителей определяют из формулы:

S = G/(w·ρ) [м 2 ]

G – расход теплоносителя [кг/ч];
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:

Вид теплоносителя Скорость потока, м/с
Вязкие жидкости 0,636 · (∆Pгр/∆Pнагр) 0,364 · (1000 – t нагр ср/ 1000 – tгр ср)

Gгр, нагр – расход теплоносителей [кг/ч];
∆Pгр, нагр – перепад давления теплоносителей [кПа];
tгр, нагр ср – средняя температура теплоносителей [°C];

Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную.

Ниже представлена формула, по которой высчитываем количество каналов среды:

Gнагр – расход теплоносителя [кг/ч];
wопт – оптимальная скорость потока теплоносителя [м/с];
fк – живое сечение одного межпластинчатого канала (известно из характеристик выбранных пластин);

Гидравлический расчет

Технологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление.

Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена:

∆pп – потери давления [Па];
λ – коэффициент трения;
l – длина трубы [м];
d – диаметр трубы [м];
∑ζ – сумма коэффициентов местных сопротивлений;
ρ – плотность [кг/м 3 ];
w – скорость потока [м/с].

ОСТАВЬТЕ ЗАПРОС
и наш специалист поможет подобрать оборудование

Как проверить правильность расчета пластинчатого теплообменника?

При расчете данного теплообменника обязательно нужно указать следующие параметры:

  • для каких условий предназначен теплообменник, и какие показатели он будет выдавать.
  • все конструктивные особенности: количество и компоновка пластин, используемые материалы, типоразмер рамы, тип присоединений, расчетное давление и т.д.
  • габариты, вес, внутренний объем.

— Габариты и типы присоединений

— Расчетные данные

Они должны подходить под все условия, в которых будет подключаться, и работать наш теплообменник.

— Материалы пластин и уплотнений

в первую очередь должны соответствовать всем условия эксплуатации. Для примера: к агрессивной среде не допускаются пластины из простой нержавеющей стали, или, если разбирать совсем противоположную среду, то ставить пластины из титана, для простой системы отопления не нужно, это не будет иметь никакого смысла. Более подробное описание материалов и их соответствия определенной среде, вы можете посмотреть здесь.

— Запас площади на загрязнение

Не допускаются слишком большие размеры (не выше 50%). Если параметр больше – теплообменник выбран некорректно.

Пример расчета пластинчатого теплообменника

Исходные данные:

  • Нагрузка (кол-во тепла) 2,5 Гкал/час
  • Массовый расход 65 т/час
  • Среда: вода
  • Температуры: 95/70 град С

Переведем данные в привычные величины:

Q = 2,5 Гкал/час = 2 500 000 ккал/час

G = 65 000 кг/час

Давайте проведем расчет по нагрузке, чтобы узнать массовый расход, так как данные тепловой нагрузки являются самыми точными, ведь покупатель или клиент не способен точно подсчитать массовый расход.

Выходит, что представленные данные являются неверными.

Данную форму также можно использовать, когда мы не знаем каких-либо данных. Она подойдет если:

  • отсутствует массовый расход;
  • отсутствуют данные тепловой нагрузки;
  • неизвестна температура внешнего контура.
Горячая сторона Холодная сторона
Т1/Т2 135/9 ℃ 40/70 ℃
Расход 100т/ч

Вот так мы с вами нашли неизвестный нам ранее массовый расход среды холодного контура, имея лишь параметры горячего.

Как рассчитать пластинчатый теплообменник (видео)

Источник

Читайте также:  Мексидол уколы чем разводить вода для инъекций
Оцените статью