Пропен перманганат калия вода овр

Окислительно-восстановительные реакции с участием органических веществ

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем. Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности, что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:

Окисление алкинов

Алкины окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные кратной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

С избытком окислителя (KMnO4, K2Cr2O7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH2–CH2OH, при нагревании в кислой среде с раствором KMnO4 или K2Cr2O7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO4, K2Cr2O7, [Ag(NH3)2]OH, Cu(OH)2. Все реакции идут при нагревании:

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl2 =CO2 + Hg + 2HCl

Муравьиная кислота, кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2↑ + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

Источник

Окисление алкенов перманганатом калия

В отличие от предельных углеводородов, алкены характеризуются высокой химической активностью, обусловленной особенностями строения молекулы. При обычных условиях алкены охотно вступают в реакции неполного окисления с превращением в органические соединения других классов. Универсальный реагент в процессах окисления алкенов – перманганат калия.

Понятие о неполном окислении

В химии органических соединений под окислением понимается взаимодействие, при котором происходит обеднение реагента водородом или обогащение кислородом, сопровождающееся отдачей электронов молекулой. Обратный процесс называется восстановлением.

Полное окисление происходит при горении углеводородов с разрушением молекулы. Продуктами в этом случае являются углекислый газ и вода. При неполном окислении продуктами становятся различные вещества.

Высокая реакционная способность алкенов обусловливается присутствием в молекуле двойной связи. Один из ее компонентов – слабая -связь – легко разрушается с образованием у углеродных атомов свободной валентности (неспаренного электрона). За счет оттягивания или отрыва освободившихся электронов и происходит окислительно-восстановительный процесс.

Определение степеней окисления

Для того чтобы правильно записать уравнение реакции неполного окисления алкена, нужно определить степени окисления атомов до вступления во взаимодействие и после него. Они рассчитываются исходя из электроотрицательности элементов.

Например, при окислении пропена перманганатом калия вступающий в реакцию пропен характеризуется следующими степенями окисления углеродных атомов:

  • В составе группы углерод, обладающий большей электроотрицательностью, смещает к себе электронные пары двух связей , отнимая у водородных атомов по одному отрицательному заряду. На связи сдвига электронов нет. Следовательно, атом углерода приобретает степень окисления -2 -2;
  • В группе аналогичный подсчет показывает для углерода степень окисления -1 -1 (для каждого водорода соответственно +1 +1);
  • В радикале углерод оттягивает на себя отрицательные заряды с трех водородных атомов и имеет степень окисления -3 -3.

В общем виде результат можно записать следующим образом:

Расчет степеней окисления в кислородсодержащих соединениях производится аналогично с учетом большей электроотрицательности кислорода.

Влияние среды на окислитель

Состав раствора (наряду с температурой) определяет, до какого соединения окислится восстановитель – алкен. Окислитель в растворах с различным уровнем кислотности (щелочности) также ведет себя неодинаково.

Неорганическая соль в водном растворе диссоциирует на катион металла и собственно окислитель – перманганат-анион . В ходе реакции марганец восстанавливается от степени окисления +7 +7 до той или иной величины в зависимости от среды.

В нейтральной и слабощелочной среде марганец приобретает степень окисления +4 +4:

Кислород из перманганат-аниона присоединяется к алкену по месту двойной связи.

Под воздействием серной кислоты марганец восстанавливается до степени окисления +2 +2:

При окислении со щелочью (гидроксид лития достаточно высокой концентрации) марганец восстановится до +6 +6:

Мягкое окисление

Процесс в нейтральной или слабощелочной среде при обычной температуре представляет собой так называемое мягкое окисление перманганатом калия, или гидроксилирование. В алкене разрывается -связь, и к освободившимся валентностям двух углеродных атомов присоединяются две гидроксогруппы . Источниками их формирования служат:

  • кислород из перманганат-иона;
  • вода.

Продукт реакции – диол (двухатомный спирт). Например, окисление этилена перманганатом калия приводит к образованию этиленгликоля:

Для составления полного уравнения нужно:

  1. определить степени окисления реагентов:
  2. рассчитать электронный баланс:
  3. расставить коэффициенты:
  4. ввести в уравнение недостающие реагенты и продукты, исходя из равенства состава в левой и правой частях уравнения, и определить окончательные коэффициенты:

Реакция окисления пропена в нейтральной среде перманганатом калия составляется аналогично:

Дальше мягкое окисление не идет, так как -связи в молекуле в мягких условиях сохраняются. Раствор перманганата теряет окраску, а оксид марганца выпадает в виде бурого осадка. Гидроксилирование, известное также как реакция Вагнера, служит для выявления в молекулах двойной связи.

Жесткое окисление

Жесткими называют процессы окисления, протекающие в нейтральном растворе в условиях повышенной температуры, а также при добавлении кислоты или щелочи. В этих случаях двойная связь в алкене разрушается полностью, а продуктами реакции становятся кетоны, кислоты (с промежуточным окислением до альдегида) либо соли.

Окисление перманганатом калия в кислой среде

Пропен в содержащем кислоту растворе реагирует до образования уксусной кислоты и углекислого газа:

Степени окисления участвующих в реакции углеродных атомов и марганца составят:

Электронный баланс определяется только с учетом углерода, вошедшего в состав кислоты:

Сначала расставляются коэффициенты в окислителе, восстановителе и в продуктах окисления:

Затем вписываются недостающие вещества и полностью рассчитываются коэффициенты:

Еще один пример жесткого окисления алкенов перманганатом калия с серной кислотой – реакция с участием пентена-2. Молекула расщепляется по месту двойной связи, и ее фрагменты окисляются через промежуточное образование альдегидов до двух кислот:

Электронный баланс составляется для двух углеродных атомов алкена, поскольку оба они являются восстановителями.

Правило, по которому осуществляется окисление углерода, отражено в таблице:

Так, в 2-метилпропене первичный атом окисляется через промежуточные формальдегид (метаналь) и муравьиную кислоту полностью – до углекислого газа, а третичный – только до ацетона:

Окисление алкенов в щелочной среде

При нагревании с концентрированной щелочью алкены окисляются до солей:

Если один из углеродных атомов – первичный, он окисляется до углекислого газа:

Окисление в нейтральном растворе

В условиях высокой температуры образующаяся щелочь вступает в реакцию, в результате которой окисление алкенов продолжается до образования кетонов или солей. Так, при жестком окислении пропена в нейтральной среде получаются те же продукты, что и в присутствии концентрированного гидроксида калия: ацетат и неорганические соли калия – карбонат и манганат .

Кетон – результат окисления третичного углеродного атома, и дальнейшую реакцию они не поддерживают. Например, при окислении метилпропена как конечный продукт образуется ацетон:

Заключение

Взаимодействие с раствором перманганата калия в мягких или жестких условиях является показателем высокой реакционной способности алкенов, которая обусловлена присутствием в молекуле легко разрываемой -связи. Реакции мягкого и жесткого окисления относятся к числу характерных химических свойств алкенов как ненасыщенных углеводородов.

Источник

Читайте также:  Сколько прет по воде амфибия баз 5937
Оцените статью