- Какая проходимость, расход воды из труб диаметром 1/2″, 3/4″, 1″, 1.25″ дюймов из водопровода в час?
- Как рассчитать пропускную способность трубы
- Методы расчета пропускной способности трубопроводов
- Физические методы расчета пропускной способности труб
- Табличные методы расчета
- Расчет с помощью программ
- Как рассчитать пропускную способность газовой трубы
- Формула расчета пропускной способности газовой трубы
- Таблица пропускных способностей газовых труб в зависимости от давления
- Пропускная способность канализационной трубы
- Формула гидравлического расчета
- Таблицы пропускной способности безнапорных труб канализации
- Таблицы пропускной способности напорных канализационных систем
- Пропускная способность водопроводной трубы
- Проходимость трубы в зависимости от диаметра
- Таблица пропускной способности труб по температуре теплоносителя
- Таблица пропускной способности труб в зависимости от давления теплоносителя
- Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)
- Формула гидравлического расчета
- Онлайн-калькулятор: расчет пропускной способности труб
Какая проходимость, расход воды из труб диаметром 1/2″, 3/4″, 1″, 1.25″ дюймов из водопровода в час?
Сколько выбежит воды за час из водопровода если открыта труба:
-Три четверти дюйма
-Дюйм с четвертью
Вот как бы знать еще и давление для воды. Но значит будем приводить значение для большинства вариантов величин давления в системе.
Пропускная способность любых труб напрямую зависит от их сечения. Во внимание берется конечно же внутренний диаметр. Для расчетов можно пользоваться вот этой готовой таблицей данных пропускной способности труб диаметром от 15 мм. до 100 мм. при различном давлении воды в водопроводе. Ведь как известно, вода может бежать и самотеком и нагнетаться насосами, а это даст совершенно разные результаты на выходе (имею ввиду количественный результат)
А вот вам таблица для перевода дюймовой маркировки труб (как указано в условии вопроса) в миллиметровую —
Вот еще довольно полезное видео о пропускной способности труб, вентиляционных, водопроводных и труб отопления.
Почему я задавал такой вопрос, да потому что ходили слухи, что вот если горводоканал поймают человека который поливает свой огород из шланга не имея счётчика на воду, то посчитают расход по сечению того самого шланга или ввода в дом/двор и предъявят счёт на оплату с начала огородного сезона, а его они считают хорошо с мая месяца, каждый день за исключения дождливых.
Так вот я специально поинтересовался, а сколько же будет таковым расход воды из шланга или трубы по её сечению.
И мне дали вразумительный ответ.
Так вот при течении самотёком! из труб будет расход следующий.
Труба пол дюйма — 1.1 куб в час
Труба три четверти дюйма (самая распространённая на вводах и поливных шлангах) — 2 куба в час
Труба дюймовая — 3 куба в час
и это при самотёке.
Если же в водопроводной системе существует давление от 1.5 до 6 единиц, то это значение вам помножат ещё на это производное.
То есть вы можете получить значение в расходе воды к примеру со шланги три четверти в от 3 до 12 кубов в час — именно такое количество воды может вытечь с вашего шланга за час.
теперь посчитайте сумму санкций и подумайте, а может поставить счётчик или если это невозможно, заключить договор с водоконалом на оплату полива согласно размера участка, сумма за полив сотки огорода весьма подъёмная, а сада и того меньше, чем рисковать и потом охать.
На мой взгляд тут можно говорить лишь об ориентировочных цифрах, потому что для точного расчёта необходимо учитывать целый ряд факторов, помимо диаметра трубы.
И более того точные расчёты могут быть абсолютно индивидуальны, потому что учитывается длительность эксплуатации труб.
За годы эксплуатации на внутренней поверхности труб появляются различные отложения (известковые, или ржавчина) те самые отложения сужают внутренний диаметр трубы и расход уже иной.
Так же важно учитывать:
Какое давление в трубопроводе, чем больше давление тем больше воды она может пропустить, то есть больше расход даже при одинаковом диаметре.
Количество изгибов, поворотов, разветвлений на трубопроводе и это влияет на расход.
Материал изготовления труб, тут учитывается степень шероховатости внутренней поверхности труб, так у труб ПП она меньше чем у стальных труб.
Толщина стенок трубы, даже при одинаковом наружном диаметре внутренний диаметр может быть разным в зависимости от толщины стенок трубы.
Ну и плюс надо учитывать через что рассчитывается расход, так к примеру диаметр отверстия крана меньше диаметра трубы на которую он установлен.
То есть точные расчёты чрезвычайно сложны и требуют специальных знаний.
А приблизительный расход следующий:
труба 1/2 дюйма, расход 1,09 кубов в час.
3/4 дюйма, расход 1,8 кубов в час.
1 дюйм, 3 куба в час.
1,25 дюйма, 4,8 кубов в час.
Проще считать если перевести дюймы в мм, вот таблица
Источник
Как рассчитать пропускную способность трубы
Расчет пропускной способности — одна из самых сложных задач при прокладке трубопровода. В этой статье мы попробуем разобраться с тем, как именно это делается для разных видов трубопроводов и материалов труб.
Трубы с высокой пропускной способностью
Пропускная способность – важный параметр для любых труб, каналов и прочих наследников римского акведука. Однако, далеко не всегда на упаковке трубы (или на самом изделии) указана пропускная способность. Кроме того, от схемы трубопровода тоже зависит, сколько жидкости пропускает труба через сечение. Как правильно рассчитать пропускную способность трубопроводов?
Методы расчета пропускной способности трубопроводов
Существует несколько методик расчета данного параметра, каждая из которых является подходящей для отдельного случая. Некоторые обозначения, важные при определении пропускной способности трубы:
Наружный диаметр – физический размер сечения трубы от одного края внешней стенки до другого. При расчетах обозначается как Дн или Dн. Этот параметр указывают в маркировке.
Диаметр условного прохода – приблизительное значение диаметра внутреннего сечения трубы, округленное до целого числа. При расчетах обозначается как Ду или Dу.
Физические методы расчета пропускной способности труб
Значения пропускной способности труб определяют по специальным формулам. Для каждого типа изделий – для газо-, водопровода, канализации – способы расчета свои.
Табличные методы расчета
Существует таблица приближенных значений, созданная для облегчения определения пропускной способности труб внутриквартирной разводки. В большинстве случаев высокая точность не требуется, поэтому значения можно применять без проведения сложных вычислений. Но в этой таблице не учтено уменьшение пропускной способности за счет появления осадочных наростов внутри трубы, что характерно для старых магистралей.
Вид жидкости | Скорость (м/сек) |
Вода городского водопровода | 0,60-1,50 |
Вода трубопроводной магистрали | 1,50-3,00 |
Вода системы центрального отопления | 2,00-3,00 |
Вода напорной системы в линии трубопровода | 0,75-1,50 |
Гидравлическая жидкость | до 12м/сек |
Масло линии трубопровода | 3,00-7,5 |
Масло в напорной системе линии трубопровода | 0,75-1,25 |
Пар в отопительной системе | 20,0-30,00 |
Пар системы центрального трубопровода | 30,0-50,0 |
Пар в отопительной системе с высокой температурой | 50,0-70,00 |
Воздух и газ в центральной системе трубопровода | 20,0-75,00 |
Существует точная таблица расчета пропускной способности, называемая таблицей Шевелева, которая учитывает материал трубы и множество других факторов. Данные таблицы редко используются при прокладке водопровода по квартире, но вот в частном доме с несколькими нестандартными стояками могут пригодиться.
Расчет с помощью программ
В распоряжении современных сантехнических фирм имеются специальные компьютерные программы для расчета пропускной способности труб, а также множества других схожих параметров. Кроме того, разработаны онлайн-калькуляторы, которые хоть и менее точны, но зато бесплатны и не требуют установки на ПК. Одна из стационарных программ «TAScope» – творение западных инженеров, которое является условно-бесплатным. В крупных компаниях используют «Гидросистема» — это отечественная программа, рассчитывающая трубы по критериям, влияющим на их эксплуатацию в регионах РФ. Помимо гидравлического расчета, позволяет считать другие параметры трубопроводов. Средняя цена 150 000 рублей.
Как рассчитать пропускную способность газовой трубы
Газ – это один из самых сложных материалов для транспортировки, в частности потому, что имеет свойство сжиматься и потому способен утекать через мельчайшие зазоры в трубах. К расчету пропускной способности газовых труб (как и к проектированию газовой системы в целом) предъявляют особые требования.
Формула расчета пропускной способности газовой трубы
Максимальная пропускная способность газопроводов определяется по формуле:
Qmax = 0.67 Ду2 * p
где p — равно рабочему давлению в системе газопровода + 0,10 мПа или абсолютному давлению газа;
Ду — условный проход трубы.
Существует сложная формула для расчета пропускной способности газовой трубы. При проведении предварительных расчетов, а также при расчетах бытового газопровода обычно не используется.
Qmax = 196,386 Ду2 * p/z*T
где z — коэффициент сжимаемости;
Т- температура перемещаемого газа, К;
Согласно этой формуле определяется прямая зависимость температуры перемещаемой среды от давления. Чем выше значение Т, тем больше газ расширяется и давит на стенки. Поэтому инженеры при расчетах крупных магистралей учитывают возможные погодные условия в местности, где проходит трубопровод. Если номинальное значение трубы DN будет меньше давления газа, образующегося при высоких температурах летом (например, при +38…+45 градусов Цельсия), тогда вероятно повреждение магистрали. Это влечет утечку ценного сырья, и создает вероятность взрыва участка трубы.
Таблица пропускных способностей газовых труб в зависимости от давления
Существует таблица расчетов пропускных способностей газопровода для часто применяемых диаметров и номинального рабочего давления труб. Для определения характеристики газовой магистрали нестандартных размеров и давления потребуются инженерные расчеты. Также на давление, скорость движения и объем газа влияет температура наружного воздуха.
Максимальная скорость (W) газа в таблице — 25 м/с, а z (коэффициент сжимаемости) равен 1. Температура (Т) равна 20 градусов по шкале Цельсия или 293 по шкале Кельвина.
Pраб.(МПа) | Пропускная способность трубопровода (м?/ч), при wгаза=25м/с;z=1;Т=20?С=293?К | |||||||
---|---|---|---|---|---|---|---|---|
DN 50 | DN 80 | DN 100 | DN 150 | DN 200 | DN 300 | DN 400 | DN 500 | |
0,3 | 670 | 1715 | 2680 | 6030 | 10720 | 24120 | 42880 | 67000 |
0,6 | 1170 | 3000 | 4690 | 10550 | 18760 | 42210 | 75040 | 117000 |
1,2 | 2175 | 5570 | 8710 | 19595 | 34840 | 78390 | 139360 | 217500 |
1,6 | 2845 | 7290 | 11390 | 25625 | 45560 | 102510 | 182240 | 284500 |
2,5 | 4355 | 11145 | 17420 | 39195 | 69680 | 156780 | 278720 | 435500 |
3,5 | 6030 | 15435 | 24120 | 54270 | 96480 | 217080 | 385920 | 603000 |
5,5 | 9380 | 24010 | 37520 | 84420 | 150080 | 337680 | 600320 | 938000 |
7,5 | 12730 | 32585 | 50920 | 114570 | 203680 | 458280 | 814720 | 1273000 |
10,0 | 16915 | 43305 | 67670 | 152255 | 270680 | 609030 | 108720 | 1691500 |
Пропускная способность канализационной трубы
Пропускная способность канализационной трубы – важный параметр, который зависит от типа трубопровода (напорный или безнапорный). Формула расчета основана на законах гидравлики. Помимо трудоемкого расчета, для определения пропускной способности канализации используют таблицы.
Формула гидравлического расчета
Для гидравлического расчета канализации требуется определить неизвестные:
- диаметр трубопровода Ду;
- среднюю скорость потока v;
- гидравлический уклон l;
- степень наполнения h/ Ду (в расчетах отталкиваются от гидравлического радиуса, который связан с этой величиной).
На практике ограничиваются вычислением значения l или h/d, так как остальные параметры легко посчитать. Гидравлический уклон в предварительных расчетах принято считать равным уклону поверхности земли, при котором движение сточных вод будет не ниже самооочищающей скорости. Значения скорости, а также максимальные значения h/Ду для бытовых сетей можно найти в таблице 3.
Юлия Петриченко, эксперт
Ду, мм | h/Ду | Самоочищающая скорость, м/с |
150-250 | 0,6 | 0,7 |
300-400 | 0,7 | 0,8 |
450-500 | 0,75 | 0,9 |
600-800 | 0,75 | 0,1 |
900+ | 0,8 | 1,15 |
Кроме того, существует нормированное значение минимального уклона для труб с малым диаметром: 150 мм
(i=0.008) и 200 (i=0.007) мм.
Формула объемного расхода жидкости выглядит так:
где a — это площадь живого сечения потока,
v – скорость потока, м/с.
Скорость рассчитывается по формуле:
где R – это гидравлический радиус;
С – коэффициент смачивания;
Отсюда можно вывести формулу гидравлического уклона:
По ней определяют данный параметр при необходимости расчета.
где n – это коэффициент шероховатости, имеющий значения от 0,012 до 0,015 в зависимости от материала трубы.
Гидравлический радиус считают равным радиусу обычному, но только при полном заполнении трубы. В остальных случаях используют формулу:
где А – это площадь поперечного потока жидкости,
P– смоченный периметр, или же поперечная длина внутренней поверхности трубы, которая касается жидкости.
Таблицы пропускной способности безнапорных труб канализации
В таблице учтены все параметры, используемые для выполнения гидравлического расчета. Данные выбирают по значению диаметра трубы и подставляют в формулу. Здесь уже рассчитан объемный расход жидкости q, проходящей через сечение трубы, который можно принять за пропускную способность магистрали.
Кроме того, существуют более подробные таблицы Лукиных, содержащие готовые значения пропускной способности для труб разного диаметра от 50 до 2000 мм.
Таблицы пропускной способности напорных канализационных систем
В таблицах пропускной способности напорных труб канализации значения зависят от максимальной степени наполнения и расчетной средней скорости сточной воды.
Диаметр, мм | Наполнение | Принимаемый (оптимальный уклон) | Скорость движения сточной воды в трубе, м/с | Расход, л/сек |
100 | 0,6 | 0,02 | 0,94 | 4,6 |
125 | 0,6 | 0,016 | 0,97 | 7,5 |
150 | 0,6 | 0,013 | 1,00 | 11,1 |
200 | 0,6 | 0,01 | 1,05 | 20,7 |
250 | 0,6 | 0,008 | 1,09 | 33,6 |
300 | 0,7 | 0,0067 | 1,18 | 62,1 |
350 | 0,7 | 0,0057 | 1,21 | 86,7 |
400 | 0,7 | 0,0050 | 1,23 | 115,9 |
450 | 0,7 | 0,0044 | 1,26 | 149,4 |
500 | 0,7 | 0,0040 | 1,28 | 187,9 |
600 | 0,7 | 0,0033 | 1,32 | 278,6 |
800 | 0,7 | 0,0025 | 1,38 | 520,0 |
1000 | 0,7 | 0,0020 | 1,43 | 842,0 |
1200 | 0,7 | 0,00176 | 1,48 | 1250,0 |
Пропускная способность водопроводной трубы
Водопроводные трубы в доме используются чаще всего. А так как на них идёт большая нагрузка, то и расчет пропускной способности водопроводной магистрали становится важным условием надежной эксплуатации.
Проходимость трубы в зависимости от диаметра
Диаметр – не самый важный параметр при расчете проходимости трубы, однако тоже влияет на ее значение. Чем больше внутренний диаметр трубы, тем выше проходимость, а также ниже шанс появления засоров и пробок. Однако помимо диаметра нужно учитывать коэффициент трения воды о стенки трубы (табличное значение для каждого материала), протяженность магистрали и разницу давлений жидкости на входе и выходе. Кроме того, на проходимость будет сильно влиять число колен и фитингов в трубопроводе.
Таблица пропускной способности труб по температуре теплоносителя
Чем выше температура в трубе, тем ниже её пропускная способность, так как вода расширяется и тем самым создаёт дополнительное трение. Для водопровода это не важно, а в отопительных системах является ключевым параметром.
Существует таблица для расчетов по теплоте и теплоносителю.
Диаметр трубы, мм | Пропускная способность | |||
---|---|---|---|---|
По теплоте | По теплоносителю | |||
Вода | Пар | Вода | Пар | |
Гкал/ч | т/ч | |||
15 | 0,011 | 0,005 | 0,182 | 0,009 |
25 | 0,039 | 0,018 | 0,650 | 0,033 |
38 | 0,11 | 0,05 | 1,82 | 0,091 |
50 | 0,24 | 0,11 | 4,00 | 0,20 |
75 | 0,72 | 0,33 | 12,0 | 0,60 |
100 | 1,51 | 0,69 | 25,0 | 1,25 |
125 | 2,70 | 1,24 | 45,0 | 2,25 |
150 | 4,36 | 2,00 | 72,8 | 3,64 |
200 | 9,23 | 4,24 | 154 | 7,70 |
250 | 16,6 | 7,60 | 276 | 13,8 |
300 | 26,6 | 12,2 | 444 | 22,2 |
350 | 40,3 | 18,5 | 672 | 33,6 |
400 | 56,5 | 26,0 | 940 | 47,0 |
450 | 68,3 | 36,0 | 1310 | 65,5 |
500 | 103 | 47,4 | 1730 | 86,5 |
600 | 167 | 76,5 | 2780 | 139 |
700 | 250 | 115 | 4160 | 208 |
800 | 354 | 162 | 5900 | 295 |
900 | 633 | 291 | 10500 | 525 |
1000 | 1020 | 470 | 17100 | 855 |
Таблица пропускной способности труб в зависимости от давления теплоносителя
Существует таблица, описывающая пропускную способность труб в зависимости от давления.
Расход | Пропускная способность | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ду трубы | 15 мм | 20 мм | 25 мм | 32 мм | 40 мм | 50 мм | 65 мм | 80 мм | 100 мм |
Па/м — мбар/м | меньше 0,15 м/с | 0,15 м/с | 0,3 м/с | ||||||
90,0 — 0,900 | 173 | 403 | 745 | 1627 | 2488 | 4716 | 9612 | 14940 | 30240 |
92,5 — 0,925 | 176 | 407 | 756 | 1652 | 2524 | 4788 | 9756 | 15156 | 30672 |
95,0 — 0,950 | 176 | 414 | 767 | 1678 | 2560 | 4860 | 9900 | 15372 | 31104 |
97,5 — 0,975 | 180 | 421 | 778 | 1699 | 2596 | 4932 | 10044 | 15552 | 31500 |
100,0 — 1,000 | 184 | 425 | 788 | 1724 | 2632 | 5004 | 10152 | 15768 | 31932 |
120,0 — 1,200 | 202 | 472 | 871 | 1897 | 2898 | 5508 | 11196 | 17352 | 35100 |
140,0 — 1,400 | 220 | 511 | 943 | 2059 | 3143 | 5976 | 12132 | 18792 | 38160 |
160,0 — 1,600 | 234 | 547 | 1015 | 2210 | 3373 | 6408 | 12996 | 20160 | 40680 |
180,0 — 1,800 | 252 | 583 | 1080 | 2354 | 3589 | 6804 | 13824 | 21420 | 43200 |
200,0 — 2,000 | 266 | 619 | 1151 | 2486 | 3780 | 7200 | 14580 | 22644 | 45720 |
220,0 — 2,200 | 281 | 652 | 1202 | 2617 | 3996 | 7560 | 15336 | 23760 | 47880 |
240,0 — 2,400 | 288 | 680 | 1256 | 2740 | 4176 | 7920 | 16056 | 24876 | 50400 |
260,0 — 2,600 | 306 | 713 | 1310 | 2855 | 4356 | 8244 | 16740 | 25920 | 52200 |
280,0 — 2,800 | 317 | 742 | 1364 | 2970 | 4356 | 8566 | 17338 | 26928 | 54360 |
300,0 — 3,000 | 331 | 767 | 1415 | 3076 | 4680 | 8892 | 18000 | 27900 | 56160 |
Таблица пропускной способности трубы в зависимости от диаметра (по Шевелеву)
Таблицы Ф.А и А. Ф. Шевелевых являются одним из самых точных табличных методов расчета пропускной способности водопровода. Кроме того, они содержат все нужные формулы расчета для каждого конкретного материала. Это объемный информативный материал, используемый инженерами-гидравликами чаще всего.
В таблицах учитываются:
- диаметры трубы – внутренний и наружный;
- толщина стенки;
- срок эксплуатации водопровода;
- длина магистрали;
- назначение труб.
Формула гидравлического расчета
Для водопроводных труб применяется следующая формула расчета:
Онлайн-калькулятор: расчет пропускной способности труб
Если у вас есть какие-то вопросы, или же вы обладаете какими-либо справочниками, в которых используются неупомянутые здесь методы –напишите в комментариях.
Источник