Раствор гидроксида натрия реагирует с водой

Гидроксид натрия: способы получения и химические свойства

Гидроксид натрия (едкий натр) NaOH — белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде.

Относительная молекулярная масса Mr = 40; относительная плотность для тв. и ж. состояния d = 2,130; tпл = 321º C; tкип = 1390º C;

Способы получения

1. Гидроксид натрия получают электролизом раствора хлорида натрия :

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии натрия, оксида натрия, гидрида натрия и пероксида натрия с водой также образуется гидроксид натрия:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Карбонат натрия при взаимодействии с гидроксидом кальция образует гидроксид натрия:

Качественная реакция

Качественная реакция на гидроксид натрия — окрашивание фенолфталеина в малиновый цвет .

Химические свойства

1. Гидроксид натрия реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

2. Гидроксид натрия реагирует с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:

3. Гидроксид натрия реагирует с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

4. С кислыми солями гидроксид натрия также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:

5. Гидроксид натрия взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется до силиката и водорода:

Фтор окисляет щелочь. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфордиспропорционируют в растворе гидроксида натрия:

Сера взаимодействует с гидроксидом натрия только при нагревании:

6. Гидроксид натрия взаимодействует с амфотерными металлами , кроме железа и хрома. При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксид натрия вступает в обменные реакции с растворимыми солями .

Хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с гидроксидом натрия взаимодействуют соли аммония .

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксид натрия разлагается при нагревании до температуры 600°С:

2NaOH → Na2O + H2O

9. Гидроксид натрия проявляет свойства сильного основания. В воде практически полностью диссоциирует , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксид натрия в расплаве подвергается электролизу . При этом на катоде восстанавливается натрий, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Источник

с чем реагирует раствор гидроксида натрия

1. C кислотами:
NaOH + NCl = NaCl + H2O
2. С кислотными оксидами:
2NaOH + CO2 => Na2CO3 + H2O
2NaOH + SO2 => Na2SO3
3. С солями тяжелых металлов:
СuCl2 + 2NaOH=> Cu(OH) + 2NaCl
4. C амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
ZnO + 2NaOH → Na2ZnO2 + H2O
5. С неметаллами:
4Р + 3NaOH + 3Н2О → РН3 + 3NaH2РО2.
3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O

6. C галогенами:
2NaOH + Cl2 → NaClO + NaCl + H2O(дисмутация хлора)
6NaOH + 3I2 → NaIO3 + 5NaI + 3H2O

7. С металлами: Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал) . Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксиалюмината натрия и водорода:

2Al + 2NaOH + 6H2O → 3H2↑ + 2Na[Al(OH)4]

1. C кислотами:
NaOH + NCl = NaCl + H2O
2. С кислотными оксидами:
2NaOH + CO2 => Na2CO3 + H2O
2NaOH + SO2 => Na2SO3
3. С солями тяжелых металлов:
СuCl2 + 2NaOH=> Cu(OH) + 2NaCl
4. C амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
ZnO + 2NaOH → Na2ZnO2 + H2O
5. С неметаллами:
4Р + 3NaOH + 3Н2О → РН3 + 3NaH2РО2.
3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O

6. C галогенами:
2NaOH + Cl2 → NaClO + NaCl + H2O(дисмутация хлора)
6NaOH + 3I2 → NaIO3 + 5NaI + 3H2O

7. С металлами: Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал) . Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксиалюмината натрия и водорода:

Источник

Гидроксид натрия

Гидроксид натрия, натрий гидроксид — неорганическое соединение, гидроксид состав NaOH. Представляет собой белые, непрозрачные и очень гигроскопичные кристаллы. Вещество хорошо растворимый в воде при соединении с водой выделяется большое количество тепла.

Проявляет сильные щелочные свойства. Значение pH 1% -го водного раствора составляет 13.

Гидроксид натрия является токсичным соединением, может также вызывать коррозию металлов. Вещество применяется в производстве многочисленных продуктов, в частности, поверхностно-активных веществ, бумаги, косметики, лекарственных средств.

Физические свойства

Гидроксид натрия NaOH — белое твердое вещество. Оставленный на воздухе едкий натрий вскоре рассеивается так как притягивает влагу из воздуха. Вещество хорошо растворяется в воде, при этом выделяется большое количество теплоты.

Растворимость NaOH в воде

Температура, ° C 0 10 20 25 30 40 50 60 70 80 90 100
Растворимость,% 30 39 46 50 53 58 63 71 74 76 76 79

Растворимость в метаноле составляет 23,6 г / л (при 28 ° C), в этаноле — 14,7 г / л (28 ° C).

Раствор едкого натра ошибкой на ощупь.

Термодинамика растворов

Энтальпия растворения для бесконечно разбавленного водного раствора составляет -44,45 кДж / моль.

Из водных растворов кристаллизуются гидраты:

  • при 12,3-61,8 ° C — моногидрат NaOH · H 2 O (сингониях ромбическая, температура плавления 65,1 ° C; плотность 1,829 г / см; ΔH 0 утв -425,6 кДж / моль)
  • в интервале -28 … -24 ° C — гептагидрат NaOH · 7H 2 O;
  • от -24 до -17,7 ° C — пентагидрат NaOH · 5H 2 O;
  • от -17,7 до -5,4 ° C — тетрагидрат NaOH · 4H 2 O (α-модификация);
  • от -8,8 до 15,6 ° C — NaOH · 3,5Н 2 О (температура плавления 15,5 ° C).
  • от 0 ° C до 12,3 ° C — дигидрат NaOH · 2H 2 O;

Получение

Исторически первым методом получения гидроксида натрия было взаимодействие соды Na 2 CO 3 и гашеной водой извести CaO:

Проведению реакции способствует перемешивание и высокая температура, поэтому ее осуществляли в стальных реакторах с мешалками. После получения продуктов, от продуктов отделяли растворим карбонат кальция и выпаривали остаточный раствор гидроксида натрия при 180 ° C в чугунных емкостях без доступа воздуха. Таким образом можно было получить раствор концентрацией до 95%.

В 1892 году независимо друг от друга американский ученый Гамильтон Кастнер и австриец Карл Кельнер открыли способ получения гидроксида электролизом хлорида натрия, который широко распространен в природе. Течение реакций можно описать суммарным уравнением:

Этот метод и по сей день является основным промышленным способом добывания NaOH, однако некоторые условия проведения синтеза испытывали модификаций. В частности, для предотвращения протекания реакций между продуктами и исходными веществами различные этапы взаимодействия проводят в отдельных реакторах или разграничиваются. По этому критерию различают три основных метода: ртутный, диафрагменные и мембранный.

Ртутный процесс

В оригинальном методе синтеза NaOH в качестве катода используется ртутный электрод. Попадая на катод, ионы натрия образуют там жидкие амальгамы переменного состава NaHg n:

Амальгамы выделяются из реакционной системы и переводятся в другую, где происходит разложение амальгамы водой с образованием гидроксида натрия:

По этому методу образуется раствор NaOH концентрацией 50-73% и практически свободен от загрязняющих примесей (хлора, хлорида натрия). Образована в результате разложения ртуть возвращается в электрод.

На аноде (графитовом или другом) происходит окисление хлорид-ионов с образованием свободного хлора

Кроме этого, имеют место также побочные реакции: окисление гидроксид-иона и электрохимическое образования хлорат-иона. Гидролизом полученного хлора могут образовываться и незначительные количества гипохлорит-ионов.

Диафрагменные процесс

В диафрагменного методе пространство между катодом и анодом разъединен перегородкой, которая не пропускает растворы и газы, однако не препятствует прохождению электрического тока и миграции ионов. Обычно, в качестве таких перегородок используется асбестовая ткань, пористые цементы, фарфор и т.

В анодный пространство подается раствор NaCl: на аноде (графитовом или магнетитовых) восстанавливаются хлорид-ионы, а катионы Na + (и, частично, анионы Cl -) мигрируют сквозь диафрагму к катодной пространства. Там катионы где сочетаются с гидроксид-ионами, образованными восстановлением воды на железном или медном катоде:

С катодной пространства в результате выделяется смесь гидроксида и хлорида натрия с содержанием NaOH 10-15% (и около 18% NaCl). Путем испарения удается увеличить концентрацию гидроксида до 50%, но содержание хлорида все равно остается существенным. Для выделения хлорида из смеси, ее обрабатывают жидким аммиаком с образованием легковиддилюваного хлорида аммония (однако, этот способ является малораспространенным за высокой стоимости его проведения). Также применяется метод, который заключается в охлаждении смеси и выделении кристаллов гидрата NaOH · 3,5H 2 O, которые в дальнейшем дополнительно дегидратують.

Мембранный процесс

Этот способ был разработан в 1970-х годах компанией «DuPont» и считается наиболее совершенным из существующих. В мембранном процессе в реакторе устанавливается катионообменная мембрана, которая является проницаемой для ионов Na +, движущихся в катодный пространство, и подавляет миграцию гидроксид-ионов, которые мигрируют в обратном направлении — таким образом в катодном пространстве увеличивается концентрация составляющих NaOH. Экономически выгодной для синтеза считается концентрация 30-35%, а новейшие мембраны позволяют увеличить это значение до 50%.

По этому методу хлорид натрия теоретически не образуется, но проникновение хлорид-ионов через мембрану все же может иметь место.

Получение твердого NaOH

Твердый NaOH (каустическая сода) получают выпариванием его раствора к содержимому воды меньше 0,5-1,5%. Сначала 50% -ный раствор выпаривают в вакууме до концентрации 60%, а концентрацию 99% достигают с применением теплоносителей (смесь NaNO 2, NaNO 3, KNO 3) при температуре выше 400 ° C: раствор подается насосом в разогретую камеру для испарения, где отделяется остальные воды.

Марки

Гидроксид натрия выпускается в двух видах: твердом и жидком. Твердая гранулированная каустическая сода представляет собой белую твердую массу с размером чешуек 0,5-2 см. Редкий раствор каустической соды — бесцветный. Коммерчески важны растворы гидроксида натрия с концентрацией 50%.

Технический едкий натр выпускают следующих марок:

  • ТР — твердый ртутный;
  • ТД — твердый диафрагменный (плавленый)
  • РР — раствор ртутный;
  • РХ — раствор химический;
  • РД — раствор диафрагменный.

Химические свойства

Гидроксид натрия активно поглощает влагу из воздуха, образуя гидраты различного состава, которые разлагаются при нагревании:

В растворах соединение хорошо распадается:

Проявляя сильные щелочные свойства, гидроксид натрия легко взаимодействует с кислотами, кислотными и амфотерными оксидами и гидроксидами:

NaOH легко взаимодействует с галогенами, а при высоких температурах — также и с металлами:

При взаимодействии с солями, которые являются производными слабых оснований, образуются соответствующие гидроксиды:

Реагируя с монооксидом углерода, синтезируется формиат натрия:

Требования безопасности

Сода каустическая пожаро- и взрывобезопасная. Едкая, коррозионно активное вещество. По степени воздействия на организм относится к веществам 2-го класса опасности. Как твердое вещество, так и концентрированные его растворы вызывают очень сильные ожоги. Попадание щелочи в глаза может привести к тяжелым заболеваниям и даже к потере зрения. При попадании на кожу, слизистые оболочки, глаза образуются сильные химические ожоги. При попадании на кожу — промыть слабым раствором уксусной кислоты.

При работе используют защитные средства: защитные очки, резиновые перчатки, прорезиненный химостойких одежду.

Применение

Гидроксид натрия применяется во многих отраслях промышленности и в быту:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волокнистых плит.
  • Для омыления жиров при производстве мыла, шампуня и других моющих средств. В последнее время продукты на основе гидроксида натрия (с добавлением гидроксида калия, нагретые до 50-60 градусов Цельсия, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
  • В химических отраслях промышленности — для нейтрализации кислот и кислотных оксидов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке — для производства масел.
  • Для изготовления биодизельного топлива — которое получают из растительных масел и используют для замены обычного дизельного топлива. Для получения биодизеля в девяти массовых единиц растительного масла добавляют одну массовую единицу спирта (то есть соблюдается пропорция 9: 1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается превосходной воспламеняемости, что обеспечивается высоким цетановым числом. Если для минерального дизтоплива характерен показатель в 50-52%, то метиловый эфир соответственно 56-58% цетана. Сырьем для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При ее производстве в процессе этерификации также образуется глицерин который используется в пищевой, косметической и бумажной промышленности, или перерабатывается в Эпихлоргидрин по методу Сольве.
  • Как агент для растворения засоров канализационных труб, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегуе засорения и способствует легкому продвижению его далее по трубе.
  • В гражданской обороне для дегазации и нейтрализации ядовитых веществ, в том числе зарина, в ребризера (изолирующих дыхательных аппаратах (ИДА), для очистки воздуха, выдыхаемого от углекислого газа.
  • Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
  • В приготовлении пищи: для мытья и очистки фруктов и овощей от кожуры, в производстве шоколада и какао, напитков, мороженого, покраске карамели, для размягчения маслин и предоставления им черного окраса, при производстве хлебобулочных изделий. Зарегистрировано в качестве пищевой добавки E524.
  • В косметологии для удаления ороговевших участков кожи: бородавок, папиллом.

Видео по теме

Источник

Читайте также:  Сладковатый привкус во рту когда пьешь воду
Оцените статью