- Углерод — характеристика элемента и химические свойства
- Химические свойства углерода
- Углерод как восстановитель:
- Углерод как окислитель:
- Нахождение углерода в природе
- Неорганические соединения углерода
- Оксид углерода (II) СО
- Оксид углерода (IV) СO2
- Угольная кислота и её соли
- Карбиды
- Цианиды
- Карбонаты
- Углерод
- Химические свойства углерода
- Кислородные соединения углерода
- Скачать:
- Похожее
- Один ответ на “Углерод”
- Добавить комментарий Отменить ответ
Углерод — характеристика элемента и химические свойства
Характеристика углерода. Свойства простых веществ и соединений
Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.
Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа.
Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх, а другой, либо 2ру, либо 2рz-орбитали.
Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2px 1 2py 1 2pz 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.
Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р—р- и одна s—s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .
При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.
Аллотрорпия углерода. Алмаз и графит
В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества.
Химические свойства углерода
Наиболее характерные степени окисления: +4, +2.
При низких температурах углерод инертен, но при нагревании его активность возрастает.
Углерод как восстановитель:
— с кислородом
C 0 + O2 – t° = CO2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O2 – t° = 2C +2 O угарный газ
— с водяным паром
C 0 + H2O – 1200° = С +2 O + H2 водяной газ
— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O2
— с серой образует сероуглерод:
С + 2S2 = СS2.
Углерод как окислитель:
— с некоторыми металлами образует карбиды
Ca + 2C 0 = CaC2 -4
— с водородом — метан (а также огромное количество органических соединений)
— с кремнием, образует карборунд (при 2000 °C в электропечи):
Нахождение углерода в природе
Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО3, доломита – MgCO3*CaCO3; гидрокарбонатов – Mg(НCO3)2 и Са(НCO3)2, СО2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.
Неорганические соединения углерода
Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.
Оксид углерода (II) СО
Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.
Получение
1) В промышленности (в газогенераторах):
C + O2 = CO2
2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H2SO4(конц.):
HCOOH = H2O + CO
При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.
2) с оксидами металлов
C +2 O + CuO = Сu + C +4 O2
3) с хлором (на свету)
4) реагирует с расплавами щелочей (под давлением)
CO + NaOH = HCOONa (формиат натрия)
5) с переходными металлами образует карбонилы
Оксид углерода (IV) СO2
Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H2O растворяется 0,9V CO2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO2 называется «сухой лёд»); не поддерживает горение.
- Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:
- Действием сильных кислот на карбонаты и гидрокарбонаты:
Химические свойства СO2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты
При повышенной температуре может проявлять окислительные свойства
С +4 O2 + 2Mg – t° = 2Mg +2 O + C 0
Качественная реакция
Помутнение известковой воды:
Оно исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:
Угольная кислота и её соли
H2CO3 — Кислота слабая, существует только в водном растворе:
Двухосновная:
H2CO3 ↔ H + + HCO3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO3 — ↔ H + + CO3 2- Cредние соли — карбонаты
Характерны все свойства кислот.
Карбонаты и гидрокарбонаты могут превращаться друг в друга:
Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:
Качественная реакция — «вскипание» при действии сильной кислоты:
Карбиды
CaO + 3 C = CaC2 + CO
Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:
Be2C и Al4C3 разлагаются водой с образованием метана:
В технике применяют карбиды титана TiC, вольфрама W2C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).
Цианиды
получают при нагревании соды в атмосфере аммиака и угарного газа:
Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:
Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:
2 Au + 4 KCN + H2O + 0,5 O2 = 2 K[Au(CN)2] + 2 KOH.
При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды:
KCN + S = KSCN.
При нагревании цианидов малоактивных металлов получается дициан: Hg(CN)2 = Hg + (CN)2. Растворы цианидов окисляются до цианатов:
2 KCN + O2 = 2 KOCN.
Циановая кислота существует в двух формах:
В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH4OCN = CO(NH2)2 при упаривании водного раствора.
Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».
Существует изомер циановой кислоты – гремучая кислота
H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC)2) используются в ударных воспламенителях.
Синтез мочевины (карбамида):
Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.
Карбонаты
Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H2CO3 – слабая кислота (К1 =1,3·10 -4 ; К2 =5·10 -11 ). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:
При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO2 + H2O ↔ H2CO3 .
При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:
Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na2CO3) используется в производстве стекла.
Источник
Углерод
В XVII – XVIII вв., в период расцвета теории флогистона, считали , что уголь полностью состоит из этого таинственного вещества: ведь при горении угля почти не образуется твердого остатка. И только А.Л.Лавуазье, изучая горение угля, пришел к выводу, что уголь – всего лишь простое вещество. Лавуазье назвал новый элемент Carboneum вместо старого латинского названия carbone pur – «чистый уголь», которым долгое время пользовались химики.
Алмаз. При слове «алмаз» сразу же вспоминаются окутанные завесой тайны истории, повествующие о поисках сокровищ. Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметом их страсти является кристаллический углерод – тот самый углерод, который образует сажу, копоть и уголь. Впервые это доказал Лавуазье. Он поставил опыт по сжиганию алмаза, используя собранную специально для этого зажигательную машину. Оказалось, алмаз сгорает на воздухе при температуре около 700 о С, не оставляя твердого остатка, как и обычный древесный уголь.
Необработанные алмазы
В структуре алмаза каждый атом углерода имеет четырех соседей, которые расположены от него на равных расстояниях в вершинах тетраэдра. Весь кристалл представляет собой единый трёхмерный каркас. С этим связаны многие свойства алмаза, в частности его самая высокая среди минералов твёрдость. Она-то и дала камню имя, которое происходит от греч. «адамас» — «твердый, непреклонный, несокрушимый».
Кристаллы алмаза, особенно огранённые (бриллианты), очень сильно преломляют свет. Этим и обусловлена знаменитая «игра бриллиантов».
В России ювелирные алмазы вошли в моду в середине XVIII в. Ими украшали не только царские диадемы и скипетры, но также брелки, застежки, трости, табакерки и даже обувь! Мелкие алмазы используются для резки стекла и металлов, служат наконечниками свёрл, резцов. Алмазный порошок издревле применяют для полировки и огранки драгоценных камней.
Графит. В древности графит считали одним из минералов свинца, возможно из-за того, что, подобно свинцу, он оставляет на бумаге след (поэтому из графита делают грифели). В XVIII в. К. В. Шееле доказал, что графит представляет собой минеральный уголь». Родственные отношения между алмазом и графитом были подробно изучены коллегой Лавуазье французским химиком Луи Бернаром Гитоном де Морво: при осторожном нагревании алмаза без доступа воздуха он получил порошок графита.
Графит
Графит – мягкое вещество серого цвета. Атомы углерода связаны в нем в плоские слои, состоящие из соединенных рёбрами шестиугольников, наподобие пчелиных сот. Каждый атом в таком слое имеет трёх соседей. Для образования трёх ковалентных связей атом предоставляет три электрона, а четвертый электрон, образуя π-связи, делокализован по всему кристаллу. Этим объясняются такие свойства графита, как металлический блеск и электропроводность.
Поскольку электронные облака атомов из соседних плоских слоев перекрываются, между слоями возникают слабые связи, которые рвутся даже при незначительной нагрузке. Для того чтобы убедиться, достаточно провести карандашом по листу бумаги: на листе останется след из чешуек графита.
Графит широко применяется в технике. Графитовый порошок используется для изготовления минеральных красок, а также в качестве смазочного материала – между отдельными слоями графита взаимодействие настолько слабое, что возникает скольжение. Графитовые стержни служат электродами во многих электрохимических процессах; из смеси графита с глиной изготовляют тигли для плавки металлов. Блоки из особо чистого графита являются основным материалом для создания атомных реакторов. В первом отечественном реакторе, например, было использовано 450 т графита.
В отсутствии кислорода графит и алмаз выдерживают нагревание до высоких температур: эти вещества переходят в газовую фазу в виде молекул Сn лишь при 3000 о С. Поэтому графит используют как теплозащитный материал для головных частей ракет.
Химические свойства углерода
При обычной температуре углерод малоактивен. При нагревании он реагирует со многими простыми и сложными веществами.
Углерод может быть как окислителем, так и восстановителем, поэтому в соединениях может проявлять положительную и отрицательную степень окисления.
- Углерод как восстановитель
Как и другие неметаллы, углерод проявляет свойства при взаимодействии с кислородом и другими более электроотрицательными элементами.
а) углерод горит на воздухе с выделением большого количества тепла. При этом образуется СО2:
При недостатке кислорода образуется СО:
б) раскаленный углерод реагирует с парами серы, легко соединяется с хлором и другими галогенами:
в) так как для углерода в отличие от других неметаллов весьма характерны восстановительные свойства, он может восстанавливать оксиды металлов и неметаллов:
2C + PbO2 = Pb + 2CO
Это свойство углерода широко используется в металлургии.
г) при пропускании через раскаленный уголь водяного пара получается смесь оксида углерода (II) с водородом, или водяной газ:
- Углерод как окислитель
Углерод проявляет окислительные свойства при взаимодействии с металлами и водородом.
а) углерод взаимодействует с металлами, образуя карбиды металлов:
В промышленности карбид кальция получают при взаимодействии углерода с негашеной известью СаО, которую получают из известняка СаСО3:
CaO + 3C = CaC2 + CO↑
б) углерод реагирует с водородом, при этом образуется метан СН4:
Кислородные соединения углерода
Оксид углерода (II) СО, или угарный газ. Он не имеет запаха и цвета, плохо растворим в воде, токсичен.
В лаборатории его получают разложением муравьиной кислоты при нагревании в присутствии серной кислоты или фосфорного ангидрида:
Углерод в угарном газе имеет степень окисления +2, поэтому для него характерны реакции присоединения, в которых он является восстановителем.
Угарный газ горит с образованием углекислого газа и выделением тепла:
Он реагирует с хлором на свету в присутствии катализатора – угля. При этом образуется фосген:
Фосген – ядовитый газ, применялся как отравляющее средство в первую мировую войну.
Восстановительные свойства угарного газа используются в металлургии для получения металлов из руд:
CO + FeO = CO2 + Fe
Оксид углерода (IV), или углекислый газ СО2.
Он бесцветен, не имеет запаха, тяжелее воздуха, плохо растворяется в воде. Он образуется при:
а) горении углерода в избытке кислорода:
б) разложении карбонатов и гидрокарбонатов при нагревании:
Оксид углерода (IV) не поддерживает горения. Только некоторые активные металлы горят в нем, так как отнимают кислород:
2Mg + CO2 = 2MgO + C
Оксид углерода (IV) – кислотный оксид. Он реагирует с основаниями, основными оксидами, с водой. При взаимодействии с водой образуется угольная кислота:
Мрамор (карбонат кальция)
Угольная кислота. Как двухосновная кислота она диссоциирует по двум ступеням и поэтому образует два ряда солей – нормальные и кислые соли (карбонаты и гидрокарбонаты). Примеры солей: гидрокарбонаты – NaHCO3, Mg(HCO3)2; карбонаты — Na2CO3, CaCO3.
Карбонаты щелочных металлов и аммония хорошо растворимы в воде. Карбонаты щелочноземельных металлов в воде практически нерастворимы. Карбонаты алюминия, хрома, железа не могут существовать в водных растворах, так как подвергаются полному гидролизу, в результате которого выпадает осадок соответствующего гидроксида и выделяется углекислый газ.
Все карбонаты, кроме карбонатов щелочных металлов, при нагревании разлагаются на оксид металла и углекислый газ:
Качественной реакцией на карбонаты и гидрокарбонаты является их взаимодействие с растворами кислот, при котором выделяется углекислый газ:
При пропускании СО2 через известковую воду Са(ОН)2 выпадает осадок СаСО3 (раствор мутнеет):
Са(ОН)2 + СО2 = СаСО3↓ + Н2О (качественная реакция на СО2)
Скачать:
Скачать бесплатно реферат на тему: «Углерод» Углерод.doc (230 Загрузок)
Скачать бесплатно реферат на тему: «Углерод в природе» Углерод-в-природе.doc (248 Загрузок)
Скачать бесплатно реферат на тему: «Подгруппа углерода» Подгруппа-углерода.-Углерод.docx (203 Загрузки)
Скачать бесплатно реферат на тему: «Углеродные нанотрубки» Углеродные-нанотрубки.doc (214 Загрузок)
Скачать бесплатно реферат на тему: «Алмаз-минерал» Алмаз-минерал.docx (230 Загрузок)
Скачать бесплатно реферат на тему: «Алмаз-графит» Алмаз-графит.docx (226 Загрузок)
Скачать бесплатно реферат на тему: «Уголь» Уголь.docx (213 Загрузок)
Скачать рефераты по другим темам можно здесь
*(на изображении записи фотография бриллианта)
Похожее
Один ответ на “Углерод”
Все интересно написано , в статье об углероде не много не понятно для чего там просто написан Na2CO3
Добавить комментарий Отменить ответ
Репетитор по химии. Занятия проходят онлайн по Скайпу. По всем вопросам пишите в Ватсапп: +7 928 285 70 42
Источник