Реакция замещения цинка с водой

Реакция цинка с водой

Реакция взаимодействия цинка с водой.

Уравнение реакции взаимодействия цинка с водой:

Цинк и вода взаимодействуют друг с другом.

Zn + H2O → ZnO + H2 (t = 600-800 °C).

При обычных условиях цинк с водой практически не реагирует. Только раскаленный до красна цинк может вступать в реакцию с водяным паром при температуре 600-800 о С.

Реакция цинка с водой протекает при условии: при температуре 600-800 °C.

В результате реакции цинка с водой образуются оксид цинка и водород .

Однако в присутствии кислорода или во влажном воздухе цинк медленно окисляется .

Реакция цинка, воды и кислорода протекает при обычных условиях: при комнатной температуре.

В результате реакции цинка, воды и кислорода образуется гидроксид цинка .

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Мировая экономика

Справочники

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (106 485)
  • Экономика Второй индустриализации России (102 475)
  • Программа искусственного интеллекта ЭЛИС (27 492)
  • Метан, получение, свойства, химические реакции (23 735)
  • Этилен (этен), получение, свойства, химические реакции (22 821)
  • Природный газ, свойства, химический состав, добыча и применение (21 169)
  • Крахмал, свойства, получение и применение (20 575)
  • Целлюлоза, свойства, получение и применение (19 426)
  • Пропилен (пропен), получение, свойства, химические реакции (19 107)
  • Прямоугольный треугольник, свойства, признаки и формулы (18 729)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Источник

§ 36. Ряд активности металлов. Реакции замещения

Вспомните:

• простые вещества состоят из атомов одного химического элемента, их разделяют на металлы и неметаллы;

• для металлов характерны металлический блеск, электропроводность, пластичность и т. п.

Понятие о ряде активности металлов

Во многих химических реакциях принимают участие простые вещества, в частности металлы. Металлы могут взаимодействовать почти со всеми классами неорганических соединений, которые изучаются в школьном курсе химии. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, произойдет реакция или нет.

Чем больше активность металла, тем энергичнее он взаимодействует с другими веществами. По активности все металлы можно расположить в ряд, который называется рядом активности металлов (вытеснительным рядом металлов, рядом напряжений металлов, электрохимическим рядом напряжений металлов). Этот ряд впервые составил и изучил выдающийся украинский ученый Η. Н. Бекетов, поэтому у данного ряда есть еще одно название — ряд Бекетова.

Ряд активности металлов Бекетова выглядит так (более полный ряд см. на форзаце 2):

Николай Николаевич Бекетов (1827-1911)

Русский и украинский химик, основатель украинской школы физической химии, академик Петербургской академии наук с 1886 г. Родился в семье морского офицера. Закончил Казанский университет, работал в Петербурге в Медико-химической лаборатории. Преподавал химию цесаревичу — будущему императору Николаю II. С 1855 г. профессор императорского университета в Харькове, где по предложению ученого в 1864 г. было открыто первое в Украине физикохимическое отделение. Именно там впервые в мире он начал преподавать физическую химию как отдельную дисциплину. Бекетов открыл способ восстановления металлов из их оксидов, который и сегодня используют в металлургии, установил зависимость сродства элементов от порядкового номера, первым получил чистые оксиды щелочных элементов (Натрия, Калия), составил ряд активности металлов, который назван его именем, был автором первого в мире учебника по физической химии.

В этом ряду металлы расположены по уменьшению их химической активности в водных растворах. Таким образом, среди приведенных металлов наиболее активным является калий, а наименее активным — золото. С помощью этого ряда легко выяснить, какой металл активнее другого. Также в этом ряду находится водород. Конечно, водород не является металлом, но в данном ряду его активность принята за точку отсчета (своего рода ноль).

Взаимодействие металлов с кислотами

Металлы, расположенные в ряду активности слева от водорода, способны вступать в реакции с кислотами, в которых атомы металлических элементов замещают атомы Гидрогена в кислотах. При этом образуются соль соответствующей кислоты и водород Н2 (рис. 36.1, с. 194):

Рис. 36.1. Взаимодействие металлов с кислотами: а — алюминий; б — цинк; в — никель

Чем левее расположен металл в ряду активности, тем более бурно он взаимодействует с кислотами. Наиболее интенсивно вытесняют водород из кислот те металлы, которые расположены в самом начале ряда. Так, магний взаимодействует очень бурно (жидкость словно закипает), цинк взаимодействует значительно спокойнее, железо реагирует совсем слабо (пузырьки водорода едва образуются), а медь вовсе не взаимодействует с кислотой (рис. 36.2).

Рис. 36.2. Взаимодействие металлов с хлоридной кислотой

Если металл расположен в ряду активности справа от водорода, то он не способен вытеснять водород из растворов кислот, и потому реакция не происходит (табл. 12, с. 197):

Обратите внимание на уравнения реакций металлов с кислотами, приведенные выше: в этих реакциях атомы металлических элементов из простого вещества замещают атомы Гидрогена в кислотах. Такие реакции называют реакциями замещения.

Реакции замещения — это реакции, в которых атом элемента простого вещества вытесняет атом другого элемента из сложного вещества.

Взаимодействие нитратной и концентрированной сульфатной кислот с металлами происходит по другой схеме. В таких реакциях водород почти не выделяется, а выделяются другие продукты реакции, о чем вы узнаете в следующих классах.

Взаимодействие металлов с водой

Металлы, расположенные в ряду активности слева от водорода, способны вытеснять водород не только из растворов кислот, но и из воды. Как и в случае с кислотами, активность взаимодействия металлов с водой зависит от расположения металла в ряду активности (рис. 36.3).

Рис. 36.3. При обычных условиях натрий и кальций активно взаимодействуют с водой с выделением водорода, а цинк и железо не взаимодействуют

Металлы, расположенные в ряду активности слева от магния, взаимодействуют с водой при обычных условиях. В таких реакциях образуются щелочи и водород:

Литий взаимодействует с водой очень бурно (рис. 36.4):

Рис. 36.4. Взаимодействие лития с водой с образованием бесцветного раствора литий гидроксида

Калий реагирует с водой так бурно, что иногда случается взрыв: во время реакции выделяется настолько большое количество теплоты, что выделяемый водород загорается и вызывает воспламенение самого металла.

Кальций и натрий взаимодействуют с водой так же бурно, но без взрыва:

То, что в результате реакции активных металлов с водой образуются щелочи, можно доказать, добавив раствор фенолфталеина, который приобретает характерную малиновую окраску (рис. 36.5, с. 196).

Рис. 36.5. После взаимодействия кальция с водой добавили фенолфталеин: в растворе виден осадок кальций гидроксида, а малиновый цвет свидетельствует о наличии щелочи

Магний взаимодействует с водой по такой же схеме, что и активные металлы, но вместо щелочи образуется нерастворимое основание. Реакция протекает настолько медленно, что сначала при добавлении магния к воде никакой реакции не наблюдается — пузырьки водорода начинают выделяться лишь спустя некоторое время (рис. 36.6). Для инициирования реакции воду следует немного подогреть или проводить реакцию в кипящей воде.

Рис. 36.6. При комнатной температуре магний взаимодействует с водой очень медленно, раствор слегка мутнеет вследствие образования малорастворимого магний гидроксида

Большинство других металлов, расположенных между магнием и водородом в ряду активности, также могут взаимодействовать с водой (вытеснять из нее водород), но это происходит при более «жестких» условиях: для этого через раскаленные металлические опилки пропускают перегретый водяной пар. Конечно, при таких условиях гидроксиды разлагаются (на оксид и воду), поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

Никель, олово и свинец пассивируются водой, поэтому ни при каких условиях с водой не реагируют.

Таблица 12. Зависимость химических свойств металлов от положения в ряду активности

Взаимодействие металлов с солями

Если соль растворима в воде, то металлический элемент в ней может быть вытеснен более активным металлом:

Например, если погрузить в раствор купрум(II) сульфата железную пластинку, через определенное время на ней выделится медь в виде красного налета:

Со временем железная пластинка покрывается довольно плотным слоем порошка меди, а раствор светлеет, что свидетельствует об уменьшении в нем концентрации купрум(II) сульфата (рис. 36.7).

Рис. 36.7. Взаимодействие раствора купрум(II) сульфата с железной пластинкой

Железо расположено в ряду активности слева от меди, поэтому атомы Феррума могут вытеснить атомы Купрума из соли. Но если в раствор купрум(II) сульфата погрузить серебряную пластину, то реакция не происходит:

Медь можно вытеснить из соли любым металлом, расположенным слева от меди в ряду активности металлов. При этом медь будет вытеснять из растворов других солей любой металл, который расположен в ряду активности справа от нее (рис. 36.8):

Рис. 36.8. Менее активное, чем медь, серебро оседает на поверхности медной проволоки. Раствор приобретает голубую окраску благодаря образованию на нем соли Купрума

Наиболее активные металлы, расположенные в самом начале ряда, — натрий, калий — не вытесняют другие металлы из растворов солей, поскольку они такие активные, что взаимодействуют не с растворенной солью, а с водой, в которой эта соль растворена.

Взаимодействие металлов с оксидами

Оксиды металлических элементов также способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов. Но, в отличие от взаимодействия металлов с солями, чтобы реакция осуществилась, оксиды необходимо расплавить:

Для получения металла из оксида можно применять любой металл, который расположен в ряду активности левее, даже самые активные натрий и калий, ведь в расплавленном оксиде воды нет:

ZnO + 2Na = Na2O + Zn

CaO + 2K = K2O + Ca

Вытеснение металлов из солей или оксидов более активными металлами иногда применяют в промышленности для получения металлов.

• Многие кислоты и другие вещества алхимики называли «спиртами» (от латин. spiritus — «дух», «запах»). Так, был spiritus sale — соляный спирт, или хлоридная кислота, spiritus nitrate — нитратная кислота и т. д. В современном химическом языке от этих названий остались только spiritus ammonia — нашатырный спирт, который является раствором аммиака NH3, и spiritus vini — винный, или этиловый, спирт.

• Горящие активные металлы (магний, натрий и др.) невозможно погасить водой. Причина заключается в том, что при контакте с водой горящий магний реагирует с ней, вследствие чего выделяется водород, который только усиливает горение.

• «Царской водкой» химики называют кислоту, которая является смесью концентрированных нитратной и хлоридной кислот. Такое название эта смесь получила потому, что с ней взаимодействует даже золото.

Источник

Читайте также:  Мальдивы почему вода такого цвета
Оцените статью