- Логические задачи на переливания
- Логические задачи на переливания с решением
- Задача 1.
- Задача 2.
- Задача 3.
- Задача 4.
- Задача 5.
- Решения задач.
- Логические задачи на переливания с решением
- Решение задачи сосуд с водой
- ρ1gh1 + ρ2gh2 = ρ3gh3 + ρ4gh4
- ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
- Решение задачи сосуд с водой
- Название величины
- Обозначение
- Единица измерения
- Формула
- Объем тела
- Vт = FA / pg
- Плотность жидкости
- кг/м 3
- pж = FA / (Vg)
- Сила Архимеда
- FA = pж Vт g
- Постоянная
- g ≈ 10 Н/кг
- Физика 7 класс: все формулы и определения МЕЛКО на одной странице
- ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
- Теория для решения задач.
Логические задачи на переливания
Логические задачи на переливания с решением
Задача 1.
Отмерить 3 л, имея сосуд 5 л.
Какое наименьшее число переливаний потребуется для того, чтобы в четырехлитровую кастрюлю с помощью крана и пятилитровой банки налить 3 литра воды?
Задача 2.
Деление 10 л поровну, имея сосуды 3, 6 и 7 л.
Разделить на 2 равные части воду, находящуюся в 6-литровом сосуде (4 л) и в 7-литровом (6 л), пользуясь этими и 3-литровым сосудами.
Какое наименьшее количество переливаний потребуется?
Задача 3.
Деление 8 л поровну, имея сосуды 8, 5 и 3 л.
Разделить на две равные части воду, находящуюся в полном 8 литровом сосуде, пользуясь этим и пустыми 5- и 3-литровыми сосудами.
Какое наименьшее количество переливаний потребуется?
Задача 4.
Деление 16 л поровну, имея сосуды 6, 11 и 16 л.
Разделить на две равные части воду, находящуюся в полном 16 литровом сосуде, пользуясь этим и пустыми 11- и 6-литровыми сосудами.
Какое наименьшее количество переливаний потребуется?
Задача 5.
Два сосуда и кран с водой.
Какое наименьшее число переливаний необходимо для того, чтобы с помощью 7- и 11-литровых сосудов и крана с водой отмерить 2 л?
Решения задач.
Решение задачи 1.
Наливаем кастрюлю.
Переливаем воду из кастрюли в банку.
Наливаем кастрюлю.
Доливаем полную банку, и в кастрюле остается 3 литра.
Решение задачи 2.
В скобках – второй вариант решения.
Сосуд 6 л | Сосуд 3 л | Сосуд 7 л | |
До переливания | 4 | 0 | 6 |
Первое переливание | 1 (4) | 3 (3) | 6 (3) |
Второе переливание | 1 (6) | 2 (1) | 7 (3) |
Третье переливание | 6 (2) | 2 (1) | 2 (7) |
Четвертое переливание | 5 (2) | 3 (3) | 2 (5) |
Пятое переливание | 5 (5) | 0 (0) | 5 (5) |
Решение задачи 3.
Сосуд 8 л | Сосуд 5 л | Сосуд 3 л | |
До переливания | 8 | 0 | 0 |
Первое переливание | 3 | 5 | 0 |
Второе переливание | 3 | 2 | 3 |
Третье переливание | 6 | 2 | 0 |
Четвертое переливание | 6 | 0 | 2 |
Пятое переливание | 1 | 5 | 2 |
Шестое переливание | 1 | 4 | 3 |
Седьмое переливание | 4 | 4 | 0 |
Решение задачи 4.
Сосуд 16 л | Сосуд 11 л | Сосуд 6 л | |
До переливания | 16 | 0 | 0 |
Первое переливание | 10 | 0 | 6 |
Второе переливание | 10 | 6 | 0 |
Третье переливание | 4 | 6 | 6 |
Четвертое переливание | 4 | 11 | 1 |
Пятое переливание | 15 | 0 | 1 |
Шестое переливание | 15 | 1 | 0 |
Седьмое переливание | 9 | 1 | 6 |
Восьмое переливание | 9 | 7 | 0 |
Девятое переливание | 3 | 7 | 6 |
Десятое переливание | 3 | 11 | 2 |
Одиннадцатое переливание | 14 | 0 | 2 |
Двенадцатое переливание | 14 | 2 | 0 |
Тринадцатое переливание | 8 | 2 | 6 |
Четырнадцатое переливание | 8 | 8 | 0 |
Решение задачи 5.
Если сначала наполнить 11-литровый сосуд, то потребуется 18 переливаний, а если 7-литровый, то, как следует из рисунка, – всего 14.
Логические задачи на переливания с решением
Источник
Решение задачи сосуд с водой
Краткая теория, используемая для решения задачи на сообщающиеся сосуды. Подробнее смотрите в конспекте «Сообщающиеся сосуды. Гидравлический пресс. Шлюзы».
Сообщающиеся сосуды — два или более соединённых между собой сосудов (ниже уровни жидкости), в которых жидкость может свободно перетекать из одного сосуда в другой.
Закон сообщающихся сосудов : в открытых сообщающихся сосудах любой формы при равновесии давление жидкости на любом горизонтальном уровне одинаково. |
Схематически это выглядит таким образом, что в точках А и В ⇒ р A = р B .
ρ1gh1 + ρ2gh2 = ρ3gh3 + ρ4gh4
Обратите внимание! Ниже уровня, на котором находятся точки А и В, жидкость однородна. Обозначения : р — давление, ρ — плотность, h — высота, g — ускорение свободного падения (9,8 м/с^2).
Следствие 1 : в открытых сообщающихся сосудах при равновесии высоты столбов жидкостей, отсчитываемые от уровня, ниже которого жидкость однородна, обратно пропорциональны плотностям этих жидкостей.
Следствие 2 : в открытых сообщающихся сосудах при равновесии однородная жидкость всегда устанавливается на одинаковом уровне независимо от формы сосудов.
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1. В левом колене сообщающихся сосудов налита вода, в правом — керосин. Высота столба керосина 20 см. Рассчитайте, на сколько уровень воды в левом колене ниже верхнего уровня керосина.
Ответ: 0,04 м (или 4 см). Чтобы увидеть решение задачи, нажмите на спойлер ниже.
Задача № 2. В сообщающихся сосудах находятся ртуть и вода. Высота столба воды 68 см. Какой высоты столб керосина следует налить в левое колено, чтобы ртуть установилась на одинаковом уровне?
Ответ: 0,85 м (или 85 см).
Задача № 3. В сообщающихся сосудах находятся ртуть, вода и керосин. Какова высота слоя керосина, если высота столба воды равна 20 см и уровень ртути в правом колене ниже, чем в левом, на 0,5 см?
Ответ: 0,335 м (или 33,5 см).
Задача № 4. В цилиндрических сообщающихся сосудах находится ртуть. Площадь поперечного сечения широкого сосуда в пять раз больше площади поперечного сечения узкого сосуда. В узкий сосуд наливают воду, которая образует столб высотой 34 см. На сколько поднимется уровень ртути в широком сосуде и на сколько опустится в узком?
Ответ: в широком сосуде на 0,42 см, в узком — на 2,1 см.
Исходное положение уровня ртути показано на левом рисунке. Обозначим высоту, на которую поднялся уровень ртути в широком колене hш. Тогда объем этого столбика равен V = hш • 5S – так как площадь сечения широкого сосуда в пять раз больше, чем узкого.
Раз объем ртути в широком колене увеличился, то очевидно, что увеличился он за счет уменьшения объема в узком. Там высота столба ртути уменьшилась на высоту, точно соответствующую найденному объему. Раз сечение узкого колена меньше, чем широкого, то высота, на которую опустилась ртуть в узком сосуде, равна hy = V/S = (hш • 5S)/S = 5hш.
Давление столба воды в левом колене равно давлению столба ртути над уровнем однородной жидкости в правом:
ρвghв = ρртghрт. По рисунку мы можем выразить hрт = hш + hу и сократить уравнение на g:
ρвhв = ρрт(hш + hу). Ранее мы определили hу, следовательно:
ρвhв = ρрт(hш + 5hш) или ρвhв = 6ρртhш. Найдем hш:
hш = ρвhв : 6ρрт = 1000 • 0,34 : (6 • 13600) = 340 : 81600 = 0,0042 (м) или 0,42 (см).
hy = 5hш = 5 • 0,0042 = 0,021 (м) или 2,1 (см).
Задача № 5. Высота воды в левом колене сообщающихся сосудов h1 = 40 см, в правом h2 = 10 см. В каком направлении будет переливаться вода, если открыть кран? На сколько изменится уровень воды в левом сосуде? Найти объем воды, который перелился из одного сосуда в другой. Левое колено сосуда имеет площадь поперечного сечения S1 = 10 см 2 , правое S = 20 см 2 .
Ответ: в правый; 0,2 м; 0,2 л.
Источник
Решение задачи сосуд с водой
Формулы, используемые на уроках «Задачи на силу Архимеда», «Сообщающиеся сосуды».
Название величины
Обозначение
Единица измерения
Формула
Объем тела
Vт = FA / pg
Плотность жидкости
кг/м 3
pж = FA / (Vg)
Сила Архимеда
FA = pж Vт g
Постоянная
g ≈ 10 Н/кг
Физика 7 класс: все формулы и определения МЕЛКО на одной странице
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1. Тело объемом 2 м 3 погружено в воду. Найдите архимедову силу, действующую на тело.
Задача № 2. Определить выталкивающую силу, действующую на деревянный плот объемом 12 м 3 , погруженный в воду на половину своего объема.
Задача № 3. Каков объем железобетонной плиты, если в воде на нее действует выталкивающая сила 8000 Н?
Задача № 4. Какую силу надо приложить, чтобы удержать под водой бетонную плиту, масса которой 720 кг?
Задача № 5. Какую высоту должен иметь столб нефти, чтобы уравновесить в сообщающихся сосудах столб ртути высотой 16 см?
Задача № 6. Вес тела в воздухе равен 26 кН, а в воде — 16 кН. Каков объем тела?
Задача № 7. Какую силу нужно приложить, чтобы удержать в воде кусок гранита объемом 40 дм 3 ?
Задача № 8. Определите объем куска меди, который при погружении в керосин выталкивается силой 160 Н.
Задача № 9 (повышенной сложности). Медный шар в воздухе весит 1,96 Н, а в воде 1,47 Н. Сплошной этот шар или полый?
Задача № 10 (повышенной сложности). Рассчитайте, какой груз сможет поднять шар объемом 1 м 3 , наполненный водородом. Какой примерно объем должен иметь шар с водородом, чтобы поднять человека массой 70 кг? (Вес оболочки не учитывать.)
Задача № 11. Деревянный цилиндр плавает на поверхности воды так, что он погружен в воду на 90%. Какая часть цилиндра будет погружена в воду, если поверх воды налить слой масла, полностью закрывающий цилиндр? Плотность масла 800 кг/м 3 .
Дано: V – объем цилиндра (V = Sh); h – высота цилиндра; S – площадь основания цилиндра; V1 – объем цилиндра, погруженного в масло (V1 = V – V2 = Sh1); h1 – высота части цилиндра, погруженной в масло; V2 – объем цилиндра, погруженного в воду после добавления масла; рв – плотность воды (1000 кг/м 3 ); рм – плотность масла (800 кг/м 3 )
Найти : (h – h1) / h — ?
Решение . F – сила, выталкивающая цилиндр из воды до добавления масла F = 0,9pвgV
F1 – сила, выталкивающая цилиндр из масла F1 = pмgV1
F2 – сила, выталкивающая цилиндр из воды после добавления масла F2 = pвgV2
Баланс сил: F – F1 = F2
0,9pвgV – pмgV1 = pвgV2 V1 = V – V2 ⇒ 0,9pвV – pм(V – V2) = pвV2
V(0,9pв – pм) = V2(pв – pм) V = Sh; V1 = Sh1 ⇒
Ответ: 1/2 часть цилиндра будет погружена в воду (50%).
Задача № 12. Плоская льдина плавает в воде, выступая над уровнем воды на 3 см. Человек массой 70 кг зашел на льдину. В результате, высота выступающей части над льдиной уменьшилась в 3 раза. Найти площадь льдины.
Ответ: 3,5 м 3 .
Теория для решения задач.
Давление жидкости на покоящееся в ней тело называют гидростатическим давлением. Гидростатическое давление на глубине h равно р = ратм + p*g*h
Закон Паскаля. Жидкость и газ передают оказываемое на них давление во всех направлениях одинаково.
Конспект урока «Задачи на силу Архимеда с решениями».
Источник