С водой не взаимодействует кальций ртуть магний

С водой не взаимодействует кальций ртуть магний

Главная • Биология • Химия • Резюме • Цены • Контакты

Химия
Программа Конспекты Контрольные работы

Репетитор по Химии
Конспекты

На этой странице Вы можете найти конспект на тему «Вторая группа периодической системы элементов. Магний, кальций, цинк, ртуть. Химические свойства.» и оценить уровень подготовленного материала. Я надеюсь, что Вы, обращаясь ко мне за помощью, уже не будете покупать кота в мешке. Вы будете знать, что Вашего ребенка или Вас учит знающий свое дело специалист — репетитор по химии. Более подробную информацию обо мне Вы сможете прочитать здесь.

С уважением,
доктор биологических наук,
ведущий научный сотрудник НИИ акушерства и гинекологии им. Д.О.Отта
репетитор по химии и биологии
Соколов Дмитрий Игоревич

ВТОРАЯ ГРУППА ПЕРИОДИЧЕСКОЙ СИСТЕМЫ ЭЛЕМЕНТОВ

Общая характеристика элементов II группы

Ко II группе периодической системы элементов относятся бериллий, щелочноземельные металлы: магний, кальций, стронций, барий и радий (главная подгруппа) и подгруппа цинка: цинк, кадмий, ртуть (побочная подгруппа). Своим названием щелочноземельные металлы обязаны тому, что их оксиды (земли) при растворении в воде образуют щелочные растворы.

На внешнем электронном уровне элементов главной и побочной подгрупп находятся по два электрона (s 2 ), которые они отдают, образуя соединения со степенью окисления +2.

Для всех элементов II группы характерны сравнительно низкая температура плавления и высокая летучесть. У щелочноземельных элементов растворимость гидроксидов увеличивается от магния к барию: гидроксид магния почти не растворяется в воде, гидроксид кальция растворяется слабо, а гидроксид бария — хорошо. Растворимость же многих солей уменьшается от магния к радию. Так, сульфат магния хорошо растворяется в воде, сульфат кальция — плохо, а сульфаты стронция, бария и радия практически нерастворимы. Низкая растворимость сульфата радия используется для выделения радия из его концентратов.

В подгруппе цинка амфотерность оксидов уменьшается от цинка к ртути: гидроксид цинка хорошо растворяется в щелочах, гидроксид кадмия — значительно хуже, а гидроксид ртути в щелочах нерастворим. Активность элементов в этой подгруппе уменьшается с увеличением их атомной массы. Так, цинк вытесняет кадмий и ртуть из растворов их солей, а кадмий вытесняет ртуть.

Бериллий был открыт Л. Н. Вокленом в 1798 г. Содержание его в земной коре составляет 3,8·10 — 4 %. Металлический бериллий применяется для изготовления окон к рентгеновским установкам, так как поглощает рентгеновские лучи в 17 раз слабее алюминия. Добавка бериллия к сплавам увеличивает их твердость и электропроводность. Соединения бериллия могут вызывать очень тяжелое заболевание легких.

Стронций впервые был выделен в виде оксида А. Крофордом в 1790 г., а в чистом виде получен Г. Дэви в 1808 г. Содержание его в земной коре составляет 0,034 %. Нитрат стронция применяют в пиротехнике, а его карбонат и оксид — в сахарной промышленности. При ядерных взрывах образуется стронций-90, излучение которого очень опасно, так как вызывает лучевую болезнь, лейкоз и саркому костей.

Барий был открыт К. В. Шееле в 1774 г. и Г. Деви в 1808 г. Содержание его в земной коре составляет 0,065 %. Из соединений бария наиболее широко применяются его гидроксид, пероксид и некоторые соли. Гидроксид и хлорид бария используются в лабораторной практике, пероксид бария — для получения пероксида водорода, нитрат и хлорат — в пиротехнике, сульфат бария — в рентгеноскопии органов пищеварения. Соединения бария ядовиты.

Радий открыт М. и П. Кюри совместно с Ж. Белебном в 1898 г.

Содержэние его в земной коре составляет 1·10 — 20 % . Радий обладает естественной радиоактивностью: при его радиоактивном распаде выделяются a-частицы, электроны и образуется радон. Соли радия применяются в исследовательских целях, а также для получения радона, обладающего целебными свойствами.

Кадмий открыл Ф. Штромейер в 1817 г. и независимо от него К. Герман, К. Карстен и В. Мейснер — в 1818 г. Содержание его в земной коре составляет 1,3·10 — 5 %. Благодаря способности кадмия покрываться защитной оксидной пленкой он испольэуется как устойчивое антикоррозионное покрытие. Соединения кадмия ядовиты.

Магний открыт Г. Дэви в 1808 г.

Нахождение в природе. Содержание магния в земной коре составляет 1,87 %. Соединения его встречаются в различных минералах. Карбонат магния входит в состав доломита СаСО3·МgСО3, и магневита МgСО3, хлорид — в состав карналлита КСl·МgСl2·6Н2О, сульфат магния — в состав каинита КСl·МgSO4·6Н2О. Значительное количество солей магния содержится в морской воде, придавая ей горьковатый вкус.

Физические свойства. Магний — серебристо-белый металл с плотностью 1,74 г/см 3 , плавится при 651 °С, кипит при 1110 °С. На холоду магний покрывается оксидной пленкой, которая предохраняет его от дальнейшего окисления кислородом воздуха.

Химические свойства. Магний — активный металл. Если разрушить оксидную пленку на его поверхности, он легко окисляется кислородом воздуха. При нагревании магний энергично взаимодействует с галогенами, серой, азотом, фосфором, углеродом, кремнием и другими элементами:

2 Мg + O2 = 2 МgО (оксид магния)

Мg + Сl2 = МgСl2 (хлорид магния)

3 Мg + 2 Р= Мg3Р2 (фосфид магния)

2 Мg + Si = Мg2Si (силицид магния)

Магний не растворяется в воде, однако при нагревании довольно активно взаимодействует с парами воды:

Магний легко отнимает кислород и галогены у многих металлов, поэтому его используют для получения редких металлов из их соединений:

3Мg + МоО3 = 3 МgО + Мо

Он горит в атмосфере углекислого газа:

2 Мg + СО2 = 2 МgО + С

и хорошо растворяется в кислотах:

Получение. Магний получают электролизом расплавов его солей. Электролитом служит чистый обезвоженный карналлит, анодом — графитовый стержень, катодом — железный. Полученный жидкий магеий всплывает на поверхность и его собирают черпалками. В ходе электролиза к электролиту добавляют хлорид магния. В последнее время магний получают также восстановлением его из оксида карбидом кальция, аморфным углеродом или кремнием. Процесс восстановления карбидом протекает при температуре 1200, углеродом — при 2000, а кремнием — при 1200-1300 °С. Во избежание взаимодействия образующихся в ходе реакции металлического магния и SiО2 в реакцию вводят не MgО, а обожженный доломит — смесь оксидов кальция и магния:

МgО + СаС2 = СаО + Мg + 2 С (1200 °С)

МgО + С = Мg + СО (2000 °С)

2 МgО + СаО + Si = СаSiO3 + 2 Мg (1200-1300 °С)

Применение. Магний применяется для получения многих легких сплавов, в частности дюралюминия. Добавка магния к чугуну улучшает механические свойства последнего. Магний применяют как восстановитель при получении редких металлов (Nb, Та, Мо, W, Тl, Zr, Нf и др.) и некоторых неметаллов (например, Si).

Оксид магния МgО. Белое мелкокристаллическое вещество, нерастворимое в воде. Плавится при температуре 2800 °С. Обладает основными свойствами. Хорошо растворяется в кислотах:

при нагревании реагирует с кислотными оксидами:

В лаборатории оксид магния можно получить сжиганием металлического магния или прокаливанием его гидроксида:

В промышленности МgО лолучают термическим разложением кaрбоната магния:

Основная масса оксида магния расходуется строительной промышленностью на изготовление магнезитового цемента и магнезитовых огнеупоров.

Гидроксид магния Мg(ОН)2. Вещество белого цвета, нерастворимое в воде, но легко растворимое в кислотах:

При пропускании углекислого газа через суспензию гидроксида магния последний расгворяется с образованием гидрокарбоната магния:

Гидроксид магния получают действием щелочей или аммиака на растворы солей магния:

МgСl2 + 2 КОН = Мg(ОН)2 + 2 КСl

Если к раствору, содержащему нерастворимый гидроксид магния, добавлять соли аммония, осадок растворяется. Это объясняется тем, что ионы аммония связывают гидроксильные ионы (образуется малодиссоциированный гидроксид аммония):

Таким образом можно удерживать магний растворенным в аммиаке. Этот раствор называется магнезиальной смесью и используется для качественного и количественного определения ионов фосфорной кислоты:

Хорошо растворяются в воде нитрат, хлорид, сульфат, перхлорат, ацетат магния, а также кислые соли многоосновных кислот. Остальные соли магния плохо растворяются в воде.

Соли кальция известны человеку очень давно, но в свободном состоянии этот металл был получен английским химиком Г. Дэви только в 1808 г.

Нахождение в природе. Содержание кальция в земной коре составляет 3,3 %. Наиболее распространенными его соедлнениями являются минерал кальцит СаСО3 (главная составная часть известняка, мела и мрамора) и прозрачная разновидность кальцита — исландский шпат. Карбонат кальция входит также в состав минерала доломита СаСО3·МgСО3. Часто встречаются залежи сульфата кальция в виде минерала гипса СаSO4·2Н2О, фосфата кальция — в виде минералов фосфорита Сa3(РО4)2 и апатита 3Са3(РО4)2·СаF2 (или Са5(РO4)3F), фторида кальция — в виде минерала плавикового шпата СаF2, и нитрата кальция — в виде кальциевой, или норвежской, селитры Са(NО3)2. Кальций входит также в состав многих алюмосиликатов, в частности полевых шпатов.

Физические свойства. Кальций — серебристо-белый ковкий металл, который плавится прп температуре 850 °С и кипит при 1482 °С. Он значительно тверже щелочных металлов.

Химические свойства. Кальций — активный металл. Так, при обычных условиях он легко взаимодействует с кислородом воздуха и галогенами:

2 Са + О2 = 2 СаО (оксид кальция)

Са + Вr2 = СаВr2 (бромид кальция)

С водородом, азотом, серой, фссфором, углеродом и другими неметаллами кальций реагирует при нагревании:

Са + Н2 = СаН2 (гидрид кальция)

Са + S = СаS (сульфид кальция)

3 Са + 2 Р = Са3Р2 (фосфид кальция)

Са + 2 С = СаС2 (карбид кальция)

С холодной водой кальций взаимодействует медленно, а с горичей — очень энергично:

Кальций может отнимать кислород или галогены от оксидов и галогенидов менее активных металлов, т. е. обладает восстановительными свойствами:

5 Са + 2 NbСl5 = 5 СаСl2 + 2 Nb

Получение. Металлический кальций получают электролизом его расплавленных солей. Электролитом служит расплавленная смесь СаCl2 и СаF2 в соотношении 3: 1 по массе. Фторид кальция прибавляют для понижения температуры плавления смеси. Применение. Кальций применяют в металлургии для очистки чугуна и стали от оксидов, а также в производстве многих редких металлов (Тl, Zг, Нf, Nb, Та и др.) как восстановитель этих металлов из их оксидов и хлоридов. Сплав кальция со свинцом используют для изготовления подшипников и оболочек кабелей.

Оксид кальция СаО. Белое вещество, плавящееся при температуре около 3000 °С, с ярко выраженными основными свойствами. Хорошо взаимодействует с водой, кислотами и кислотными оксидами:

В лабораторных условиях оксид кальция можно получить окислением кальция, а также термическим разложением его карбоната. В промышленности СаО получают обжигом известняка в шахтных или вращающихся трубчатых печах при 1000-1100 °С. Поэтому его называют еще жженой или негашеной известью.

Применяют оксид кальция в промышленности строительных материалов как вяжущий материал.

Гидроксид кальция Са(ОН)2. Твердое белое вещество, плохо растворимое в воде (в 1 л воды при 20 °С растворяется 1,56 г Са(ОН)2). При обработке оксида кальция горячей водой получается мелкораздробленый гидроксид кальция — пушонка. Насыщенный водный раствор Са(ОН)2 называется известковой водой. На воздухе он мутнеет вследствие взаимодействия с углекислым газом и образования карбоната кальция.

Гидроксид кальция является щелочью. Он легко реагирует с кислотами, кислотными оксидами и солями:

Процесс взаимодействия оксида калъция с водой называется гашением. Гашеная известь в смеси с песком и водой образует известковый раствор, используемый в строительстве: для скрепления кирпичей при кладке стен, для штукатурных рабат и др. На воздухе гашеная известь поглощает углекислый газ и превращается в карбонат кальция.

Цинк в сплавах был извеетен еще в древности. В чистом виде

его получили только в конце ХVIII века.

Нахождение в природе. Содержание цинка в земной коре составляет 8,3·10 — 3 %. Его соединения довольно раслространены. Чаще других встречается минерал цинковая обманка ZnS, реже — галмей ZnСО3, кремнецинковая руда Zn2SiО4·Н2О, цинковая шпинель ZnО·Аl2O3 и красная цинковая руда, или цинкит, ZnО.

Физические свойства. Цинк — металл синевато-белого цвета, обладающий металлическим блеском. На воздухе его поверхность покрывается оксидной пленкой и тускнеет. Цинк плавится при 419,5 °С, кипит при 913 °С. Плотность литого твердого цинка составляет 7,13 г/см 3 , плотность вальцованного цинка несколько выше. При температуре плавления плотность цинка равна 6,92 г/см 3 . На холоду цинк довольно хрупок но при температуре 100-150 °С легко поддается прокатке и вытягиванию. Легко образует сплавы с другими металлами.

Химические свойства. Цинк является довольно активным металлом. Он легко вэаимодействует с кислородом, галогенами, серой и фосфором:

2 Zn + О2 = 2 ZnО (оксид цинка)

Zn + Сl2 = ZnСl2 (хлорид цинка)

Zn + S = ZnS (сульфид цинка)

3 Zn + 2 Р = Zn3Р2 (фосфид цинка)

При нагревании взаимодействует с аммиаком, в реэультате чего образуется нитрид цинка:

а также с водой:

Образующийся на поверхности цинка сульфид предохраняет его от дальнейшего взаимодействия с сероводородом.

Цинк хорошо растворим в кислотах и щелочах:

В отличие от алюминия цинк растворяется в водном растворе аммиака, так как образует хорошо растворимый аммиакат:

Цинк вытесняет менее активные металлы из растворов их солей.

Получение. Цинк получают двумя способами: пирометаллургичским и гидрометаллургическим. В обоих способах цинковую руду обжигают с целью переведения сульфида цинка в оксид:

2 ZnS + 3 O2 = 2 ZnО + 2 SO2

Выделяющийся диоксид серы используется в производстве серной кислоты. При получении цинка пирометаллургическим слособом полученный цинковый огарок (продукт обжига цинковой руды) смешивают с коксом и нагревают до 1100-1200 °С. Цинк восстанавливается:

и при 913 ‘С отгоняется.

Для получения цинка гидрометаллургическим слособом цинковый огарок растворяют в серной кислоте, отделяют примеси и электролизом сернокислого раствора выделяют цинк (катодом служит алюминий, а анодом — свинец).

Применение. Цинк применяют для оцинкования железа с целью предохранения его от коррозии (цинковая жесть), для изготовления гальванических элементов. Цинковую пыль используют как восстановитель химических процессов. Цинк входит в состав многих сплавов.

Оксид цинка ZnО. Порошок белого цвета. Плавится при температуре около 2000 °С. Плохо растворяется в воде. Обладает амфотерными свойствами. Легко растворяется как в кислотах, так и в щелочах, образуя соли цинка ц и н к а т ы:

При сплавлении взаимодействует с основными и кислотными оксидами:

ZnО + СаО = СаZnО2

Используется оксид цинка как катализатор во многих химическик процессах. Он входит также в состав цинковых белил.

Гидроксид цинка Zn(ОН)2. Обладает амфотерными свойствами, легко растворяется в кислотах и щелочах:

Он легко растворяется также в аммиаке — образуется аммиакат цинка:

Гидроксид цинка образуется при обработке соли цинка щелочью (но не аммиаком) или цинката кислотой:

Соли цинка. Хлорид цинка ZпCl2 получают растворением цинка или его оксида в соляной кислоте. Он очень хорошо растворим в воде (расплывается на воздухе). Раствор хлорида цинка в соляной кислоте применяют для обработки поверхности металла при паянии (травление). Хлорид цинка образует с соляной кислотой комплексную кислоту Н2ZnСl4, которая растворяет оксиды металлов, но не металлы. Хлорид иннкь лрименяется в медицине в качестве антисептика.

Сульфид цинка ZnS. Порошок бледно-желтого цвета, труднорастворим в воде. Плавится при 1800-1900 °С под давлением (при 1180 °С возгоняется). Легко растворяется в кислотах:

Он входит в состав литопона — минеральной краски, получаемой в рсзультате смешивания сульфида бария с сульфатом цинка:

Литонон значительно дешевле свинцовых белил, но менее устойчив на свету. Под действием ультрафиолетовых и радиоактивных лучей сульфид цинка светится. Поэтому его используют в качестве люминофора в электронно-лучевых трубках. Тонкоизмельченный сульфид цинка (цинкосульфидная серая краска) применяется для покрытий металлических конструкций мостов и деталей машин.

Сульфат цинка ZnSO4 применяется в медицине в качестве антисептпка.

Ртуть была известна еще древним грекам.

Нахождение в природе. Содержание ее в земной коре составляет

8,3·10 — 6 %. Самородная ртуть встречается в виде вкраплений в породу. Встречается также сульфид ртути НgS, называемый киноварью.

Физические свойства. Ртуть — серебристо-белый жидкий металл, затвердевает при -38,84 °С, кипит при 356,95 °С. В твердом состоянии обладает хорошей ковкостью и эластичностью. В ртути растворяются многие металлы, образуя амалыамы. В них металлы ведут себя, как и в свободном состоянии, но делаются менее активными (образование амальгамы снижает активность аналогично разбавлению). Пары ртути очень ядовиты. Ртуть не выводится из организма человека.

Химические свойства. Ртуть является малоактивным металлом. С кислородом она взаимодействует только при нагревании:

2 Нg + O2 = 2 НgО

С хлором ртуть взаимодействует на холоду, образуя хлорид ртути, или сулему:

Легко взаимодействует ртуть с порошкообразной серой, образуя очень прочное соединение — сульфид ртути:

Эту реакцию используют для связывания разлитой ртути: место, где предполагают наличие разлитой ртути, посыпают порошком серы.

В воде и щелочах ртуть не растворяется. Она растворяется в кислотах-окислителях; в концентрированной серной кислоте при нагревании, а в азотной — на холоду. В вависимости от количества ртути образуются соли ртути в степени окисления +1 и +2:

Ртуть (II) в хлориде НgСl2, восстанавливается металлической ртутью до ртути (I):

Получение. Ртуть получают из киновари, прокаливая ее на воздухе либо нагревая с железом или оксидом кальция:

НgS + Fе = Нg + FeS

4 НgS + 4 СаО = 4 Нg + 3 СаS + СаSO4

Ртуть легко отгоняется.

Применение. Металлическая ртуть применяется в различных приборах, таких, как регуляторы давления, кварцевые лампы, термометры, диффузионные вакуумные насосы и др. Ее используют также для получения красок, гремучей ртути, ртутных мазей против кожных ааболеваний. Амальгамы ртути применяются в качестве востановителей. Значительные количества ртути ислользуются в электрохимической промышленности (ртутные катоды) и полярографии.

Оксид ртути НgО. Вещество желтого или красного цвета. При нагревании легко разлагается на кислород и ртуть. Оксид ртути сбладает только основными свойствами. Он может растворяться в кислотах, с которыми ртуть образует легкорастворимые соли:

В воде оксид ртути не растворяется и при действии щелочей на растворы солей ртути (II) выпадает в осадок:

НgСl2 + 2 КОН = 2 КСl + НgО + Н2О

В соединениях ртути со степенью окисления +1 два атома ртути соединяются между собой ковалентной связью. При дсйствии щелочей на соли ртути (I) выпадают металлическая ртуть и оксид ртути (II):

Соли ртути применяются в основном как катализаторы многих химичесхих процессов. Так, сулема НgСl2 катализирует реакцию гидрохлорирования ацетилена:

НС º СН + НСl —— ® Н3С = СНСl

Сульфат ртути НgSО4 применяется как катализатор при гидратации ацетилена по реакции Кучерова:

Труднорастворимая каломель Нg2Сl2 используется при изготовлении стандартных электродов электрометрических приборов.

Источник

Читайте также:  Для чего нужна вода растениям 2 класс
Оцените статью